Title o	f the	Course	Fitle of the Course: ENGINEERING MATHEMATICS-III										Р	Cree	lits
Cours	e Cod	e: UPR	D0301								3	1		4	
Cours	e Pre-	Requi	site: B	asic te	ermino	ologies	of dif	ferenti	al equ	ation	1S, VO	ecto	r		
			a	lgebra	, conc	epts of	f prob	ability	, rules	and	forn	nula	e of		
C		• 4•		<u>itegra</u>	tion		1.	1.66	4• 1				4		
Cours	e Desc	criptio	n: Thi	s Cou	rse coi	itains	linear	differ	ential	equa	tion	s, ve	ctor c	alculu	lS,
Cours	o Ohi	activos	Lap	nace ti	ransio	rm, st		s and p	prodat	onity	•				
	To de	velop	o obstra	et logi	cal and	deritio	al thin	kina ai	nd tha	abilit	vto	rafle	ot orit	ically	
1.	linon	their v	ausuav vork	i, iogi			ai uiiii	King ai		aonn	.y to	ICIIC		ically	
2	To st	udv va	rious r	nathen	natical	tools l	ike dif	ferenti	al equa	ation	s. int	egra	l trans	forms	
2.	vecto	r calcu	ilus, pr	obabil	itv and	l statis	tics to	devise	engine	ering	g soli	utior	ns for s	ziven	,
	situat	ions.	·····, r·						0	2	5~~			5	
3.	3. The student must be able to formulate a mathematical model of a real life and														
	engineering problem, solve and interpret the solution in real world.														
Cours	e Out	comes	:			•									
COs	Afte	After the completion of the course the student will be Bloom's Cognitive													
	able to											el I	Descri	ptor	
CO1	Illustrate method of least squares to fit the curves for given											١	Understanding		
	biva	riate d	ata and	l find c	coeffici	ient of	correl	ation.							
CO2	Solv	e linea	r diffe	rential	equati	ons w	ith con	stants			III		Apply	ing	
	coef	ficient	s.		•									C	
CO3	Mak	e use o	of appr	opriate	e proba	bility	distrib	ution f	or find	ing	Ш		Applv	ing	
000	prob	abilitie	es of ev	vents.	proot	lonney	aistiio	ution	01 11110				-PP-J		
CO4	Find	Lapla	ce tran	sform	s of giv	ven fur	nctions	and us	se it to		III		Apply	ing	
	solv	e LDE	s.		0								11 2	U	
CO5	Form	n math	ematic	al mo	del for	mass-	spring	mecha	nical		IV]	Evalua	ting	
	syste	em, wh	irling	shafts,	solve	and in	terpret	the res	sult.					_	
CO6	App	ly kno	wledge	e of ve	ctor di	fferent	iation	to find			IV]	Evaluating		
	direc	ctional	deriva	tives c	url and	d diver	gence	of vect	or fiel	ds.					
CO-P	O Maj	pping:													
	DO1	DOA	DO2	DO 4	DO5	DOC	DOT	DOD	DOD			0	DO	DCO	DC
co	POI	POZ	PO3	PO4	P05	PO6	P07	PO8	P09	10	11		PO 12	PSO 1	PS0 2
CO1	3	2		2						10			1	1	-
CO2	3	2											1		
CO3	3	2		2									1		
CO4	3	2											1		
CO5	3	2											1		
200	2		1	1	1	1	1	1	1	1			-		1
Assess	ments	5:													
Teach	er Ass	sessme	nt:												
Two co	ompor	nents o	f In Se	mester	: Evalu	ation ((ISE),	One M	id Sen	nester	r Exa	min	ation ((MSE)	
and on	e End	Semes	ster Ex	aminat	tion (E	SE) ha	ving 2	0%.30)% and	1 50%	h we	ights	respe	ctively	v.

and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10

MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discuss	ions etc.
MSE: Assessment is based on 50% of course co	ontent (Normally first three units)	
ESE: Assessment is based on 100% course con	tent with60-70% weightage for course	se content
(normally last three units) covered after MSE.		
Course Contents:		
Unit 1: Linear Differential Equations with C	Constant Coefficients	8 Hrs.
Definition, general form, complete so	olution	
1.1 Rules for finding complementary funct	tion	
1.2 Short methods for finding particular in	tegral	
1.3 General Rule for finding particular inte	egral	
1.4 Cauchy's homogeneous linear differen	tial equation	
Unit 2: Applications of Linear Differential E	Equations with Constant	6 Hrs.
Coefficients		
2.1 Mass – spring Mechanical system		
2.1.1 Free oscillations		
2.1.2 Damped Oscillations		
2.1.3 Forced oscillations without dar	nping.	
2.2 Whirling Shafts		
Unit 3: Statistical Techniques		7 Hrs.
3.1 Correlation and Coefficient of correlat	ion	
3.2 Lines of regression of bivariate data		
3.3 Fitting of curves by method of least-sq	luares	
3.3.1 Fitting of straight lines		
3.3.2 Fitting of exponential curves.		
Unit 4: Probability Distributions		6 Hrs.
4.1 Random variable		
4.2 Probability mass function and probabil	ity density function	
4.3 Binomial distribution		
4.4 Poisson distribution		
4.5 Normal distribution		
Unit 5: Vector Differential Calculus		8 Hrs.
5.1 Differentiation of vectors		
5.2 Velocity and acceleration		
5.3 Gradient of scalar point function and D	Directional derivative	
5.4 Divergence of vector point function		
5.5 Curl of a vector point function		
5.6 Solenoidal and Irrotational vector field	S	
Unit 6: Laplace Transform		7 Hrs.
6.1 Definition, transforms of elementary f	unctions, properties of Laplace	
transform		
6.2 Transforms of derivative and integral		
6.3 Inverse Laplace transform		
6.4 Inverse Laplace transforms by using pa	artial fractions and convolution	
theorem.	a with constant ff - ' 1	
Loplose transformer wethod	is with constant coefficients by	
Laplace transform method.	-	

Recommended Books:

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers, Delhi.
- 2. A Text Book of Applied Mathematics, Vol. I, Vol. II and vol. III by P. N. Wartikar
- & J. N. Wartikar, Pune Vidyarthi Griha Prakashan, Pune.

Reference Books:

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, Wiley India Pvt. Ltd.
- 2. Advanced Engineering Mathematics by H. K. Dass, S. Chand, New Delhi.
- 3. A text book of Engineering Mathematics by N. P. Bali, Iyengar, Laxmi Publications (P) Ltd., New Delhi.
- 4. Mathematics for Engineers Vol-I & Vol-II by Rakesh Dube, Narosa Publishing House.

Unit wise Measurable Learning Outcomes:

Unit 1: Linear Differential Equations with Constant Coefficients and Its Applications

Students will be able to

- a) Solve linear differential equations with constant coefficients.
- b) Solve Cauchy's homogeneous linear differential equation

Unit 2: Applications of Linear Differential Equations with Constant Coefficients

Students will be able to

- a) Solve the problems on free oscillation, damped oscillation and forced vibrations.
- b) Solve the problems on whirling shafts.

Unit 3: Statistical Techniques

Students will be able to

- a) Compute coefficient of correlation for given data.
- b) Find lines of regression for the given bivariate data.
- c) Fit straight lines, exponential curves for given data.

Unit 4: Probability Distributions

Students will be able to

- a) Verify the function as probability mass and density function.
- b) Use probability distributions in solving physical and engineering problems.

Unit 5: Vector Differential Calculus

Students are able to

- a) Differentiate vector quantity.
- b) Find the directional derivative of scalar point function.
- c) Find the divergence and curl of vector point function.
- d) Determine solenoidal and irrotational fields with the help of divergence and curl respectively.

Unit 6: Laplace Transform

Students are able to

- a) Find Laplace transform by using definition
- b) Recall properties of Laplace transform and use to find transforms of given functions.
- c) Use Laplace transform method to solve linear differential equations.

Title of	the	Course:	Foundry 7	Fechnolog	gy			L	Т	Р	Cred	it			
Course			0302					3	-	-	3				
Course	Pre	-Requisit	e:	1 11	• • •	<u> </u>	1 .								
Fundam	nenta	l knowled	lge materi	als and ba	sic metal	forming te	chniques	•							
Course	Des	cription:	<u> </u>						C'11'		-11	1:			
metal.	1s ti The l	ne process pasic steps	s from wn s involved	ich solid i	metal sna g casting	pes (castin s are patter	gs) are p mmaking	roaucea t . molding	melting	and pourir	iolds with ig. shakeou	it and			
cleaning	g, he	at treating	g, and insp	pection. C	asting is	a defect pr	one man	ufacturing	g process.	Hence Ca	sting simu	lation			
helps to	visı	alize mol	d filling a	nd casting	solidifica	ation; to pro	edict san	d casting o	lefects.						
Course	Obj	jectives				C		1 6 11	1.1		6	1			
 To understand the basic casting process, sequence of operations to be followed through design of pattern and design of gating system. 															
 To gain fundamental knowledge of various traditional and special casting processes 															
• To	 To understand cause and effect of various defects in casting. 														
■ To	 To understand optimizing yield though use of casting simulation software's 														
Course	Lea	rning Ou	tcomes:		-										
CO	A fi	or the co	mplotion	of the cou	rea tha a	tudont cho	uld ho o	bla ta		Bloom's Cognitive					
CO	AI	er the co	inpletion	of the cou	i se tile s	luuent sno	ulu de a	DIE LO	10	evel	Descript	or			
CO1 List sequence of operations to be followed in a metal casting process in converting raw material in to a finished product.										I		Knowledge			
CO2 Demonstrate a sand casting process.										II	Skill				
CO3	O3 Model pattern layout by utilizing knowledge of CAD.									III	Knowledge				
CO4	Ex too	perimen Is for pre	t with mo dicting d	old filling efects.	g simulat	ion on onl	ine simu	ulation		III	Knowle	dge			
CO5	To res	demons ources.	t rate a m	elting and	d pouring	g practice	with ava	ailable		III		Knowledge			
CO6	Ca out	tegorize cause ar	between id effect a	various s analysis.	and/die o	casting def	fects by	carrying		IV		Knowledge			
CO-PO) Ma	pping:													
CO	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2														
CO2	3														
CO3			2		3										
CO4			2		3										
CO5	2														
CO6				2											
Assessm	nent	s :													
Teache Two co	r As mpo	sessment nents of I	: n Semeste	r Evaluati	on (ISE),	One Mid S	emester	Examinati	ion (MSE)) and one I	End Semes	ter			
Examin	atio	n (ESE) ha	aving 20%	, 30% and	1 50% we	eights respectively.									
		As	sessment			Marks									
						10									
MSE							30								

ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/Moodle quiz/Topic seminar/Group Discussions, Industrial case study etc.

MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Unit 1: Introduction to Overview of metal casing technology:

Importance and role of casting process as a manufacturing process in industry, Advantages and limitations of casting process, Classification of foundries, Flow chart describing foundry activities, Introduction to different ferrous and non-ferrous cast alloys and their applications

2Hrs.

04Hrs.

09Hrs.

5Hrs.

8Hrs.

8 Hrs.

Unit 2: Introduction to foundry tooling

Patterns, core boxes and dies, Types of patterns, Pattern Material, pattern making Tools, Criteria for pattern material selection, Functions of patterns, pattern design considerations, patterns layout, core boxe and dies, Application of allowances and selection of parting line, Use CAD- CAM in Designing and manufacturing of patterns and Dies, Use of 3D printing as foundry tooling

Unit 3: Gating and risering system, sand conditioning

Gating System- types of Gates and Risers, Gating Ratios and chills, Feeder location & design in actual casting, Directional Solidification in Casting, Casting Yield, Feedaids, Physical Behavior of Metals during Solidification. Use of simulation software for designing, optimization of gating, risering.

Introduction to Moulding Sand – Types and Properties, Moulding Tools and Equipments- Moulding Machines and Hand Moulding tools, Function of Core, Types of Cores, Core Prints, Core Venting and Baking, Core Shifting and Chaplets, Traditional and Modern Moulding Processes viz Bench Moulding, Floor Moulding, Pit Moulding, Stack Moulding, Green Sand Moulding, Dry Sand Moulding, Loam Moulding, Core Moulding, Machine Moulding. High pressure line, magnetic molding, vacuum "V" molding process, molding. Case studies in optimization of gating system using simulation tools

Unit 4: Special casting technology

Investment casting, full mold casting, ceramic castings, shell casting, Squeeze casting, thixocasting, vaccume casting, slush casting, Centrifugal casting and Die casting rocess and application, HPDC, LPDC,

Unit 5: Melting technology

Furnace, Types, Cupola: Constructiona Working of Cupola, Lining Material, Raw Material For Melting, Charge Calculations, Latest Designs and Modifications in Cupola Melting, Construction, Working, Applications of Rotary Furnaces, Oil Fired Furnaces, Electric Furnaces– Induction and Arc Furnaces, Selection Parameters for Furnaces, Composition, Physical Properties and Applications of Ferrous and Non-Ferrous Castings – Grey Cast Iron, S. G. Iron, White Cast Iron, Malleable Cast Iron and Non ferrous alloys as Brass, Bronze, Importance & Methods Of Inoculation In Cast Irons. Degassing And Modification Treatments In Aluminum Alloy Castings. Ladles – Types, Advancement in Lining Materials., Composition Tests – CE Meter, Wedge Test, Fluidity Test, Spectrometers, temperature Tests – Pyrometers, Maintanance and Energy Saving Concepts.

Unit 6: Post melting operations

Fettling and cleaning of castings, Shot blasting, using pneumatic chippers and grinders, Salvaging, Heat treatment and painting of castings, Defects, inspection and testing of castings, NDT-Visual, Dye penetrant, Ultrasonic, Xray radiography, Magnetic particle inspection, Casting defects cause – effect and remedies, Fish bone diagram, Casting rejection analysis, Safety aspects in foundries, Environmental issues and regulations, Possible hazards in foundries, Safety measures, Safety devices, Foundry mechanization and automation, Automatic Ladle System, industrial safety

Textbooks:

1. Manufacturing Technology: Foundry, Forming & Welding by P. N. Rao (TMH)

2. Metal Casting – Principles & Practice by T. V. Rama Rao (New Age International Pvt. Ltd.)

- 3. A Text Book on Foundry Technology by M. Lal, O. P. Khanna(Dhanpat Rai & Co.)
- 4. A Course on Workshop Technology Vol. 1 by B. S. Raghuvanshi; (Dhanpat Rai & Co.)
- 5. Fundamentals of Metal Casting by P. C. Mukharjee (Oxford & IBH Publishing Co).
- 6. Principles of Foundry Technology by P. L. Jain (Tata McGraw Hill)
- 7. Foundry Practice by N. D. Titov (MIR)
- 8. Foundry Engineering by Taylor, Flemings, Wulff (Wiley Eastern Ltd.)
- 9. Principles of Metal Casting by Heine, Loper, Rosenthal

References:

- 1. Casting Technology And Casting Alloys by A.K.Chakrabarti, (PHL Learning Pvt Ltd.)
- 2. Iron and steel making by Ahindra Ghosh, Amit Chatterjee (PHL Learning Pvt Ltd.)
- 3. Complete Casting Handbook-Metal Casting Processes, Metallurgy, Techniques & Design by John Campbell (BH Publication
- 4. Casting simulation website www.efoundryiitb.ac.in
- 5. The FOSECO Foundry man's handbook 10th edition by Butter Worth-Heinemann (BH Publication)
- 6. ASM Handbook Volume 15 on casting

Unit wise N	/leasurable stud	ents Learning Outcomes:
Unit 1	Overview of metal casing Technology:	ULO1.1: To select casting as a production process in a process plan ULO1.2: To differentiate between ferrous and non ferrous alloys.
Unit 2	Introduction to foundry tooling	ULO2.1: To select proper pattern material as per requirement and design and prepare pattern/core box with CAD design. ULO2.2: To use different wood working tools in making pattern
Unit 3	Gating and risering system, sand conditioning	ULO 3.1: To optimize gating and risering system by using CAD and online E tools. ULO3.2: To measure various sand properties by carrying out sand tests. ULO3.3: To design an gating and risering system ULO3.4: To use different methods of improving casting Yield
Unit 4	Sand Molding, core making:	ULO4.1: To select a proper molding process. ULO4.2: To learn different advanced molding and casting processes
Unit 5	Melting technology	ULO 5.1: Students should be able to select a proper furnace as per given condition. ULO 5.2: To carry out different tests prior to pouring on molten metal
Unit 6	Post melting operations	ULO 6.1: Students should be able to identify a type of defect and will be able to suggest proper remedies. ULO 6.2: To select a definite type of HT process cycle as per material and requirements.

Course Name: Foundry Technology (Theory)

Course Code: UPRD0302

Problem Statements:

FTPBLPB01: Optimization of sand cast process: An industry case study

"The industry located in MIDC area, Kolhapur is facing the serious problem of defining optimized casting process. Due to undefined process the industry is facing economical loss which needs to be reduced. How you can help the industry to optimize the sand casting process which can increase their economical loss?"

FTPBLPB02: Suggestion for reduction of casting defects such as cold shut and oversize

"The foundry located in MIDC area, Kolhapur is facing the problem of casting defect such cold shut and oversize. These defects are observed frequently which results in rejection of components. How you can help the industry to reduce these defects which can reduce the rejection of the component?"

FTPBLPB03: Suggestion for reduction of casting defects such as fins, slag inclusion, mismatch and shrinkage

"The foundry located in MIDC area, Kolhapur is facing the problem of casting defect such fins, slag inclusion, mismatch and shrinkage. These defects are observed frequently which results in rejection of components. How you can help the industry to reduce these defects which can reduce the rejection of the component?"

FTPBLPB04: Modeling and drafting of casting layout by using pattern drawing which include gating system

"The Kolhapur is well known as the cluster for foundry. These foundry industries are following the ancient techniques for drawing the casting layouts which needs to be updated by the latest technology such as CAD. Demonstrate the modeling and drafting of the any industry component including design of gating system"

FTPBLPB05: Optimization of material handling system: An industry case study

"The industry located in MIDC area, Kolhapur is facing the serious problem of material handling required for sand casting process. The optimization of material handling can boost the production rate. How you can help to optimize the material handling system in industry for sand casting process?"

FTPBLPB06: Suggestion for reduction of casting defects such as pinholes and surface roughness

"The foundry located in MIDC area, Kolhapur is facing the problem of casting defect such pinholes and surface roughness. These defects are observed frequently which results in rejection of components. How you can help the industry to reduce these defects which can reduce the rejection of the component?"

FTPBLPB07: Demonstration of casting process (prototype of component manufacture from wax)

"The industry located in MIDC area, Kolhapur is facing the serious problem of defining optimized casting process. Due to undefined process and lack of experience the industry is facing economical loss which needs to be reduced. Demonstrate the casting process to gain the hands-on experience of sand casting process."

FTPBLPB08: Numerical simulation for the prediction of defects in sand casting process

"The Kolhapur is well known as the cluster for foundry. These foundry industries are following the ancient techniques for prediction of sand casting process which needs to be updated by the latest technology such as finite element analysis. Demonstrate the FEA simulation for the prediction of defects in sand casting process"

Sr. No.	Activity	Timeline
1	PBL awareness in class	1 st week
2	Announcement of problem/s for PBL	2 nd week
3	Team formation	3 rd week
4	Project ISE I:Synopsis presentation	5 th week
5	Completion of corrections/improvements in synopsis	6 th week
6	Project ISE II: Project Progress Presentation with Model/case study	10 th week
7	Completion of correction/improvements in Evaluation II	11 th week
8	End Semester Evaluation of Project	13 th week
9	Determining future scope for improvement	14 th week

2. Activities with timeline:

3. Assessment Scheme:

- ISE-I
- ISE-II
- Project ESE
- 4. Evaluation Scheme:
 - **Project ISE I :** Synopsis presentation for 5 marks (evaluation with rubrics)
 - Project ISE II: Project Progress Presentation with Model/case study for 5 marks (evaluation with rubric)
 - End Semester Evaluation of Project: Multimedia presentation and demonstration of working models for 15 marks out of 25 of course lab ISE (evaluation with rubrics)

Title of	f the Cou	rse: M	achine	Tools	and P	rocess	es			L	,	Т	Р		Credit
Course	e Code: U	PRD03	03							3		1	-		4
Course	e Pre-Req	uisite:	operat	ions pe	erforme	ed on v	arious	machir	nes						
Course	e Descript	tion: T	his cou	rse ain	ns to in	npart k	nowled	dge of 1	machine	e tools	and o	peration	ns pe	rforme	ed on to it,
differen	nt movem	ents ree	quired	to proc	ess the	compo	onent f	rom rav	w mater	ial into	finis	hed pro	duct.		
Course	e Objectiv	ves:													
1)	To under	stand t	he vari	ous co	nventio	onal an	d basic	machi	ne tools	s and m	anufa	cturing	5		
	processe	s carrie	ed out c	on these	e mach	ines fo	r diffei	rent app	olication	ns.					
2)	To gain t	he basi	ic knov	vledge	about 1	machin	e tools	and its	s constru	uction a	and p	rinciple	s of v	workin	ıg.
3)	To study	differe	ent part	s of the	e mach	ine too	ls used	l in ma	nufactu	ring ma	chine	shops.			_
4)	To study	the de	etailed a	assemb	oly of n	nanufa	cturing	machi	ne tools	5.		-			
Course	e Learnin	g Outo	comes:		•		0								
		8													
CO	After the completion of the course the student should beBloom's Cognitive														
	able to														
										le	vel	Descr	iptor	•	
CO1	The stu	dent sh	all be a	ible to	differe	ntiate ł	between	n metal	l cutting	5	1	Unde	rstan	ding	
	process	and m	etal for	$\frac{m_{1}}{m_{1}}$	rocess	•	6	1.	. 1		2		1 .	8	
C02	The stu	dent sh	all be a $\frac{11}{2}$	ble use	e vario	us syst	ems of	machi	ne tool.		2	Ap	plyir	ng	
	5 The student shall be able to identify machine tools for various 4										Ap	plyir	ıg		
C04	The student shall be able to select mechine teel or process														
04	for simple applications										plyir	ng			
СО-РС) Mappin	g:													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POI	1 PO	12	PSO1	PSO2
CO1	2		1	1		1	1	1	2					1	
CO2	2		2	1		1	1	1	2					1	2
CO3	2	2	2	1		1	1	1		1				2	
CO4	2	2	1	2	1	1	1	1	2	1		1			2
Assess	ments :														
Teache	er Assessr	nent:√	~	_		(10)			_					_	
Two co	omponents	s of In S	Semest	er Eva	luation	(ISE),	One N	1id Sen	nester E	xamina	ation	(MSE)	and o	one En	d
Semest	er Examir	hation ((ESE) ľ	laving	20%,3	50% an	a 50%	weight	ts respec	ctively.					1
Asses	SIIICIII						10	10							
MSE							30								
ISE 2							10								
ESE							50								
ISE 1 a	Ind ISE 2	are bas	ed on a	ssignn	nent/de	clared	test/qu	iz/sem	inar/Gro	oup Dis	scussi	ons etc			1
MSE: A	Assessmer	nt is ba	sed on	50% o	f cours	e conte	ent (No	rmally	first thr	ree moo	lules)				
ESE: A	ssessmen	t is bas	ed on 1	100% c	ourse o	content	with6	0-70%	weighta	age for	cours	e conte	nt (n	ormall	y last
three m	nodules) c	overed	after M	ISE.											
Course	e Content	s:													
Unit 1:	: Lathe :	C 1	.1 1				1				1			8 H	rs.
Specifi	cation, typ	pes of l	atne; d	ifferen	t parts,	Apron	mecha	anism;	operatio	ons on	lathe,	access	ories		
Init 2	Shaping	athe t	nning	Machini	ng ume	e carcu	ation 1	orturn	mg.					5 U	re
Differe	nt eleme	nts of	shani	ng &	nc. plann	ing m	achine	s: sne	cificatio	on, sha	ner	drive	feed	5 П	1.3.
mechai	nism, wor	k hold	ling de	vices,	differe	nt ma	chining	g opera	tions in	n shape	er &	planer:	flat		

surfaces, slot cutting, grooving, T- slot, dovetail, machining time calculation, shaping and planning tools, difference between planer & shaper. Slotting Machine: specification of slotter, slotting drive	
Unit 3: Drilling Machine: specification, classification of drilling machine; work and tool holding devices, different machining operations in drilling, nomenclature of drill, reamer, machining time calculation, center drilling, Boring machine: specifications, Types of boring machines, different operations, boring bar	5 Hrs.
	0.44
Unit 4: Milling Machine: Introduction, Classification, Principal parts of column and knee type milling machine and vertical milling machine, work holding devices, Milling machine attachments, Milling cutters types, fundamentals of the Milling process- Up milling and down milling, Milling operation concepts, Indexing- Direct, Simple, Compound, Differential and Angular indexing, calculations, problems, machining time calculations	8 Hrs.
Unit 5: Gear Manufacturing: Gear shaper, hobbing and gear finishing processes Broaching: Construction and working of horizontal, vertical pull type and push type Broaching machine, Use of broach head and fixtures.	4Hrs.
Unit 6: Grinding Machine:	6 Hrs.
specification of grinding wheel; different types of grinding processes:-surface, cylindrical &	
internal grinding, tool & cutter grinding; wheel mounting, wheel dressing, wheel truing, wheel	
balancing, machining time calculation	
Textbooks:	
1. Workshop Technology by Hajra Choudhry, Vol-II, Media promoters and Publishers editon,2010	Pvt. Ltd., 2nd
2. Production technology by HMT, Tata McGraw Hill, 2004.	
3. Workshop Technology Vol. II by Bawa H. S. (TMH)	
4. Manufacturing Technology – Metal Cutting & Machine Tools by P. N. Rao (TMH)	
5. A course in Workshop Technology, Vol – 2, B S Raghuwanshi, Dhanpatrai & Co.	
References:	
1. Manufacturing Science – Amitabha Ghosh and Mallik, Affiliated East West press, 2010, 2	2nd edition.
2. Modern machining Process – Pandey and Shah, Tata Mc Graw Hill – 2009.	
3. Manufacturing processes for Engineering Materials by Serope kalpakijian and Stev	ven R.Schimid
pearson education 2009, 5th edition.	
4. Materials and Processes in Manufacturing by E.Paul DeGarmo, J T Black, Ronald A Edition, Prentice Hall of India Private limited, 2004.	A Kohser, 8th
Unit wise Measurable students Learning Outcomes:	
1.After completion of units, students are able to:	
2. Understand the metal cutting process, types of conventional machine tools used in industry, diff	erent parts of
machine tools, various operations to be performed on selected machine tool.	

Title of the Course: Thermal Engineering	L	Т	Р	Credit						
Course Code: UPRD0304	3	-	-	3						
Course Pre-Requisite: Basic Physics, Chemistry, Basic Mechanical Engg										
Course Description: Desig Concepts in Thermodynamics, Laws of Thermodynamics and										

Course Description: Basic Concepts in Thermodynamics, Laws of Thermodynamics and applications, Second Law of Thermodynamics, Modes and laws of heat transfer, Various

systems of I. C. Engine, Concepts of Compressor, Refrigeration and Air Conditioning.

Course Objectives:

1. To Understand various Laws of Thermodynamics and its applications in thermodynamic systems.

2. Study steam properties, Interpret steam tables and Mollier charts with numerical applications.

3. To Understand the Modes and laws of heat transfer.

4. Know various systems of I. C. Engine.

5. To understand the basic concepts of air compressors.

6. To get acquainted with the basic principles of refrigeration and air-conditioning.

СО	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Explain fundamentals of thermal engineering.	Π	Understanding		
CO2	Explain working of thermal devices.	Π	Understanding		
CO3	Make use of steam table and Mollier Chart.	III	Applying		
CO4	Solve for performance parameters of various thermal	III	Applying		
	devices.				

CO-PO Mapping:

СО	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2		3												
CO3		2												
CO4		3											2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:-	6 Hrs.
Thermodynamics	
Basics of Thermodynamics, First Law of Thermodynamics, Steady Flow Energy	
Equation, Carnot Cycle, Second Law of Thermodynamics, Concept of refrigeration,	

Heat Pump and Heat Engine, Equivalence of the two statements, Reversible and	
irreversible process.	
	< 11
Unit 2: Von own Dowon Cyclos	6 Hrs.
vapour Power Cycles	
Properties of steam, Ideal Rankine Cycle, Thermal efficiency, Methods to improve	
Rankine efficiency, Numerical using Steam table and Mollier Chart.	
Turbines and Condensers	
Introduction to steam turbine, Types, Compounding Introduction to condensers,	
Types.	
Unit 3:	6 Hrs.
Heat Transfer	
Application areas of heat transfer in manufacturing and machine tools, Modes and	
laws of heat transfer, steady state heat conduction, thermal resistance, Insulating	
materials, Heat Exchangers - Classification and Types	
Unit 4:	8 Hrs.
Internal Combustion Engines	
Air standard Otto, Diesel cycles, classifications of systems of I.C. engines such as	
fuel supply system for SI & CI engines, ignition system, cooling system, lubrication	
system, Performance of IC Engine – Indicated power, Brake power, Thermal	
efficiency, Specific fuel consumption, Heat balance.	
Unit 5.	7 Ure
Clift 3 Reciprocating Air Compressors	/ 1115.
Applications of compressed air. Classification of air compressors. Work and power	
calculations with and without clearance for single and two stage compression	
Volumetric efficiency and FAD Intercooling and advantages of Multistage	
compression	
Unit 6	7 Hrs
Refrigeration and Air conditioning	/ 1115.
Applications of refrigeration Reversed Carnot Cycle Bell Coleman Cycle	
Analysis of Simple Vapour Compression Cycle, Representation on T-s and p-h	
diagrams, COP and power calculations. Introduction to Vapour Absorption Cycle.	
Types and properties of refrigerants, Eco-friendly refrigerants, Psychrometry -	
basic concepts, terms and processes Summer, Winter and Industrial Air	
conditioning Systems.	
Textbooks:	
1. Basic and Applied Thermodynamics, 2nd Edition, Nag P. K., Tata McGraw-F	1111.
2. Thermodynamics: An Engineering Approach, 3rd Edition, Yunus Çengel and	
WICHAEL, BOIES, LALA WICUTAW HILL.	ion
4 Mathur and Sharma Internal Combustion Engines Dhannat Rai and Co	.011.
References:	
1. Sonntag, R. E., Borgnakke, C., & Wylen, G. J. V. Fundamentals of thermodyr	namics:
Wiley.	
2. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. Fundamentals of	

Engineering Thermodynamics.

- 3. V Ganeshan, Internal Combustion Engines, McGraw-Hill.
- 4. David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine Frank P. Incropera, Principles of Heat and Mass Transfer, Wiley; Seventh edition (2013)

Unit wise Measurable students Learning Outcomes:

After completion of unit, students are able to

- **1.** Explain fundamental of Thermodynamics.
- **2.** Use Mollier chart and steam table
- **3.** Explain fundamentals of Heat Transfer.
- 4. Solve Numericals on I. C. Engine
- 5. Solve Numericals on Reciprocating Compressor
- 6. Solve Numericals on C.O.P. of refrigeration.

Title of	the Course: Industrial Electronics & Electrical Drives	L	Т	Р	Credit							
Course	e Code:UPRD0305	03	-	-	3							
Course	Course Pre-Requisite:											
Course	Description:											
Course	Objectives:											
1. To le	arn the theoretical concepts governing the electric motors useful in	the fie	eld of	produ	ction							
enginee	ring.											
2. To st	idy various electrical machines and their applications in Productio	n Engi	neerin	g	•							
3. To st	ady various electronics devices such as power control devices, inte	grated	circui	its and	its							
industri	al applications.											
Course	e Learning Outcomes:											
CO	After the completion of the course the student should be	Blo	om's	Cogn	itive							
	able to	leve	el D	escrip	otor							
CO1	Make use of electric motors according to the requirement in	III	A	pplyi	ng							
	production engineering area.			11.2	e							
CO2	Demonstrate the control of electric motors	II Understandir										
C03	C03 Understand speed-torque characteristics of electrical machines I Understan											
0.00	for implementation of speed control methods using electrical	-	C									
	drives.											
CO4Demonstrate the knowledge of basic functioning of digitalIIUnderst												
	circuits and microcontrollers				Ū							

CO-PO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	-	-	2	2	2	-	-	-	2	-	-	-	-
CO2	-	-	2	2	2	-	-	-	2	-	-	-	-
CO3	-	-	2	2	2	-	-	-	2	-	-	-	-
CO4	-	-	2	2	2	-	-	-	2	-	-	-	-

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1 D C Motor:	7 Hrs.
Construction, working, types, equivalent circuit, back emf, speed equation, torque	
equation, speed torque characteristics, power losses, applications, Need of starter, 3 point	
starter, 4 point starter, reversal of rotation, Electric braking, DC servo motor - desirable	
features, types and applications. Stepper motor- desirable features, types and applications.	
Unit 2 3 phase AC motor:	7 Hrs.
3 phase induction motor- Construction, working, types, speed equation, torque equation,	
speed torque characteristics, power losses, applications, Need of starter, star delta starter,	
DOL starter, autotransformer starter, rotor resistance starter, reversal of rotation, Electric	
braking.	
Unit 3 Drives and Control:	7 Hrs.
Benefits of electric drive, individual drive, multi motor drive. Types of	
mechanical load (Based on speed-torque variation, active/passive load.) Concept	
of stable operating characteristics of electric motor under load variations.	
DC motor Speed control – armature control, field control(Numerical treatment), 3	
phase induction motor Speed control - voltage control, V/f control, rotor resistance	
speed control (Numerical treatment) Electrical to mechanical Energy conversion	
(Numerical Treatment)	
Unit 4 Study of Power Control Devices:	6 Hrs.
SCR, Triac, Power MOSFET, IGBT, characteristics and simple applications like	
controlled rectifiers. Triggering circuits using Diac/UJT and digital logic: Power	
supply protection circuits (over voltage, thermal shutdown and current limiting).	
Study of LIPS (only block diagram) light dimmers fan regulators	
Study of OTB (only block diagram), right animers, fun regulators.	
Unit 5 Integrated Circuits and Applications Amplifiers:	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380,	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder,	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system,	8 Hrs.
Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers.	8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, concept to distributed control systems, concept of computerized numerical 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, concept to distributed control systems, concept of computerized numerical controllers 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, concept to distributed control systems, concept of computerized numerical controllers 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CRO as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, concept to distributed control systems, concept of computerized numerical controllers Textbooks: 1. Electrical Technology (Vol. II)- B. L. Theraja ,S. Chand Publ. 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, concept to distributed control systems, concept of computerized numerical controllers Textbooks: 1. Electrical Technology (Vol. II)- B. L. Theraja ,S. Chand Publ. 2. Utillization of Electric power- R.K.Rajput, Laxmi Publ. 	8 Hrs. 8 Hrs.
 Unit 5 Integrated Circuits and Applications Amplifiers: Review of Op-amp IC 741, Audio Power Op-Amp ICs like TBA 810, LM 380, Schmidt trigger and its applications, Op-Amp as wave form generator (square and ramp), case study of waveform generator IC such as 8038 or XR 2206. IC 555 as mono-stable and a stable multi vibrator and its applications in Mechanical Engineering. Cascading of Timers, sequential timers. Binary and BCD adder, subtractor. Shift registers, counters, applications of digital circuits such as staircase, traffic light, lift controller, sequential controllers, mechanical system, opto isolators and opto couplers. Unit 6 Industrial Applications: Resistance welding, RF heating energy storage welding, ultrasonic method of testing of materials, principles of LASER and applications. DC drives, separately excited and series motors, speed control of AC motors. Use of CR0 as a display device for industrial application. Smoke, temperature, pressure, vibrations, displacement, flow, level detectors. Controllers using these sensors annunciator circuits, electronic weighing systems, electronic ignition systems, proximity switches. Analog to Digital and digital to analog converters. Introduction to PLC, concept to distributed control systems, concept of computerized numerical controllers 1. Electrical Technology (Vol. II)- B. L. Theraja ,S. Chand Publ. 2. Utillization of Electric power- R.K.Rajput, Laxmi Publ. 3. Ramamoorthy: Thyrister and Power Electronics Applications, Prentice Hall of Ind 	8 Hrs. 8 Hrs.

References:

- 1. Electrical power S. L. Uppal, DBS Publication
- 2. First course in Electrical Drives- Pillai S.K Willey Eastern
- 3. Chute & Chute: Electronics in Industry, Tata McGraw Hill.
- 4. R.P. Jain: Modern Digital Electronics, Tata McGraw Hill.
- 5. Harish C. Rai: Industrial and Power Electronics (Umesh Publication, Delhi).
- 6. C. S. Rangan, Sharma, Mahi: Instrumentation, devices and system (WIE).
- 7. Curtis Johnson: Process Instrumentation, Prentice Hall of India.

Unit wise Measurable students Learning Outcomes (ULO):

- 1. To learn the theoretical concepts governing the working of dc motor.
- 2. To learn the theoretical concepts governing the working of 3 phase induction motor.
- 3. To learn the control of dc motor and 3 phase induction motor.
- 4. Learn all speed control methods of separately excited and self excited DC motors and AC motor and with solid state control so these can be used as DC drive and AC drives.
- 5. Understand power control devices like, Triac, SCR, IGBT MOSFET and their triggering methods and design fan regulator and light dimmer circuit.
- 6. Study and select proper OPAMP mechanical or production application like wave form generators IC555 as a timer ,cascading of timers and sequential timer

Title o	f the (⁷ ours	. Drof	Possion	al Ski		alonm	ant		T	Т	P	Credit
Cours	e Cod		201101 20036	.cssiuii 1	ai ori		ciopino	CIII		02	-	-	-
Course	ourse Pre-Requisite:												
Good communication skill													
Writing skill													
Course	Course Description: The Professional Development course is designed to improve the ability of												
student	students to describe their accomplishments and sell their ideas in situations like professional												
networ	networking, company meetings, response to proposals for services, and interviews.												
Cours	Course Objectives:												
1. Stud	lent sh	ould a	ble to (Commu	inicate	effectiv	vely in	busines	s situat	ions			
2. Lear	n, Prac	tice and	d impro	ve tech	nnical s	kills							
3. Utili	ze colla	aborativ	ve and	manage	ement s	kills in	a team	contex	t				
4. Deve	elop pro	esentati	on skil	ls Dev	elops e	ethical	Skills						
5. Prep	are the	studen	t for fu	ture En	gineeri	ng posi	tions						
Cours	e Lear	ning (Outcor	nes:									
	1												
CO	Afte	r the o	comple	etion o	f the c	course	the stu	udent	should	be 🔤	Bloom	's Cogi	nitive
	able	to]	evel	Descri	ptor
CO1	Show	w techi	nical, e	thical	and so	ft skill	s nece	ssary f	or]	Ι	Unders	tanding
	work	place	succes	S									
CO2	App	ly skill	of Co	mmun	icatior	n effect	tively a	and]	Π	Applyi	ng
	profe	essiona	ally in	busine	ss situ	ations	throug	h writi	ng,				
	spea	king, a	nd list	ening.									
CO3	Deve	elop sk	tills of	techni	cal wr	iting a	nd pres	sentatio	on of]	II	Applyi	ng
	Rese	earch A	Articles	and p	roposa	ıls.							
CO4	Deve	elop pe	erform	ance at	place	ment i	ntervie	ws, Gi	roup]	II	Applyi	ng
	discu	ussions	s and o	ther re	cruitm	ent ex	ercises	by	-				
	dem	onstrat	ing aw	varenes	s of be	ehavio	ral nor	ms,					
	com	munica	ation, a	ppear	ance, b	ousines	s etiqu	ette, a	nd				
	team	work.					-						
CO-PO	O Map	pping:											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	I PSO	1 PSO2
	-	-	-	-	-	-	-	2	2 2	3	-	-	2
C02	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							+ -	-	2			
CO4	-	-	-	-	-	-	-	-	-	2	-	-	2
CO4	-	-	-	-	-	-	-	2	3	3	-	-	2
												•	· ·
Assess	ments	:											

Assessment	Marks (Mini. marks for Passing $= 40$)
ESE	100

Course Contents:

Unit 1 Technical Writing and Business Communication: Informal and formal
letter writing ,quotations, purchase orders, enquiry letter, invitation and acceptance
letter, notice of meeting ,circular, agenda and minutes of meeting.2Hrs.

Unit 2 Report and Proposal Writing: Different types of report, structure of a	2 Hrs.
report, characteristics of a good report, project report, structure of a general format	
proposal, importance of a proposal	
Unit 3 The e-English: Writing email to an unknown person, guidelines for	2 Hrs.
continuing the conversation on emails, the top ten Do's, Business emails,	
marketing emails.	
Unit 4 Team Building and Time Management: Interpersonal skills, what is needed	4 Hrs.
to form smart team. Different approaches to team building. Techniques of a time	
management: ABC analysis, Pareto analysis, fit analysis, POSEC method,	
Eisenhower method, Prerequisite of time management.	
Unit 5 Corporate Etiquettes: Business dress and grooming, office etiquettes,	2 Hrs.
telephone etiquettes, dining etiquettes, meeting etiquettes, travel etiquettes	
Unit 6 Writing a Research Article and Mastering Presentation Skills: General	2 Hrs.
form, title page, abstract, methods, results, literature cited, Microsoft office power	
points creating presentation, formatting, adding Graphics, animation videos.	
Textbooks:	
1. "Soft skills for managers", Dr. T. Kalyana Chatravarthi, Dr. T. Latha Chatravarthi Biztant	ra.
2. "Soft skills for young managers", by Prof. M. S. Rao Wiley India Pvt. Limited	
References:	
1] Dr. M. Hemamalini , "Technical English", Published by Wiley India Pvt.ltd.	
2] S. Hariharan, "Soft skills", MJP Publishers Chennai, (2010).	
Unit wise Measurable students Learning Outcomes:	
I Communicate effectively in business situations	
2 Prepare Business proposals and reports	
3 develop good communication through effective writing	
4 Perform well in campus interviews as a team leader	
5 help in organizing placement activities	
6 Deliver seminars and engineering articles with effective presentation	

Title o	of the Cou	urse: Fou	ndry Tec	hnology	Lab]	L	Т	Р	Credit				
Cours	e Code: l	UPRD033	1				-	-	2	1				
Cours	e Pre-Re	quisite:												
Fundamental knowledge materials and basic metal forming techniques.														
Course Description:														
Casting is the process from which solid metal shapes (castings) are produced by filling voids in molds with liquid metal. The basic steps involved in making castings are patternmaking, molding, melting and pouring, shakeout and cleaning, heat treating, and inspection. Casting is a defect prone manufacturing process. Hence Casting simulation helps to visualize mold filling and casting solidification; to predict sand casting defects.														
Course Objectives														
 CLO1: To learn the basic casting process, Various metals and alloys with sequence of operations to be followed through design of pattern and gating system. CLO2: To Gain fundamental knowledge of various traditional and special casting processes. CLO3: To Categorize cause and effect of various defects in casting. CLO4: To Understand optimizing yield though use of casting simulation software 														
										В	loom's	Cognit	ive	
co	After th	e complet	tion of th	e course	the stuc	lent sho	uld t	be able t	0	le	vel	Desci	riptor	
CO1	List sec process	uence of in conve	operatio	ons to be / materia	followe l in to a	ed in a n 1 finishe	netal d pr	l casting oduct.	7		I	Knowledge		
CO2	Demon	strate a s	and cast	ing proce	ess.		•				II	Skill		
CO3	Model	pattern la	yout by	utilizing	knowle	dge of	CAD).		I	III Knowle		ledge	
CO4	Experimentation Experimentation Experimentation for the second se	ment wit r predicti	h mold f ng defec	ïlling sin ts.	nulatior	n on onl	ine s	simulati	on	I	II	Know	ledge	
CO5	To dem resource	onstrate	a meltin	ig and po	ouring p	ractice	with	availab	ole	I	II	Know	ledge	
CO6	Catego out caus	rize betw se and eff	een vari ect analy	ous sand. ysis.	/die cas	ting def	fects	by carr	ying	I	V	Know	ledge	
CO-P	O Mappi	ng:				-	T					_		
CO	1	2	3	4	5	6	7	7	8	9	10	11	12	
CO1	2													
CO2	3													
CO3			2		3									
CO4			2		3									
CO5	2													
CO6				2										
Assess	sments :													
Teach One co marks	er Assess omponent each	sment: s of In Ser	mester Ev	valuation	(ISE1) a	ind one I	End S	Semester	Exami	nation	ı (ESE)	having	; 25	
	As	ssessment				Mark	s (M	ini. marl	cs for P	assing	= 10)			

ISE 1	25						
ESE (O.E)	25						
ISE 1 are based on unit assignment and lab experiment.							
ESE: Assessment is based Oral examination basedon on 100% course content							
Experiment No. 1 Aim and Objectives: Determination of grain fineness number of given foundry sand. Outcomes: Able to determine grain fineness number of foundry sand and will able to judge its effect on quality of casting Theoretical Background: Inherent sand properties, types of sand Experimentation:							
Experiment No. 2 Aim and Objectives: Determination o foundry sand. Outcomes: Able to derermine percentag and will able to judge its ef Theoretical Background: Inherent sand Experimentation: Results and Discussions: Conclusion:	f percentage of clay content present in given ge of clay content present in given foundry sand fect on quality of casting d properties, types of sand	02 Hrs.					
Experiment No. 3 Aim and Objectives: Determination of foundry sand Outcomes: Able to derermine percentag sand and will able to judge its effect on of Theoretical Background: Inherent sand Experimentation: Results and Discussions: Conclusion:	percentage of Moisture content present in given ge of Moisture content present in given foundry quality of casting d properties, types of sand	02 Hrs.					
Experiment No. 4 Aim and Objectives: Determination Gr prepared mold. Outcomes: Able to derermine percentag and green shear strength of mold and w Theoretical Background: Inherent sand Experimentation:	reen compressive and green shear strength of ge of Moisture content pres Green compressive ill able to judge its effect on quality of casting d properties, types of sand	02 Hrs.					

Results and Discussions:	
Constructions	
Conclusion:	
	I
Experiment No. 5	
Aim and Objectives: Determination of Permeability of given foundry sand.	
Outcomes: Able to determine percentage of Moisture content present in given foundry	
Permeability of mold and will able to judge its effect on quality of casting Theoretical Background: Inherent sand properties, types of sand	
Experimentation:	02 Hrs.
Results and Discussions:	
 Conclusion:	
Experiment No. 6	
Aim and Objectives: Determination of Mold/Core hardness number.	
Outcomes: Able to determine mold hardness number and will able to judge its effect on	
Theoretical Background: Inherent sand properties, types of sand	
Experimentation:	02 Hrs .
Results and Discussions:	
Conducion	
Experiment No. 7	
Aim and Objectives: Study of sand Muller and mixture.	
Outcomes: Able to study working of sand muller and to carry out sand preperation	
Theoretical Background: Inherent sand properties, types of sand	
Experimentation:	02 Hrs.
Results and Discussions:	
Conclusion:	
	1
Experiment No. 8	
Aim and Objectives: Preparation of specimen for measurement of green/dry	
Shear/compressive sheringin of mold.	
Theoretical Background: Inherent sand properties, types of sand	
Experimentation:	02 Hrs.
Results and Discussions:	
Conclusion	

Experiment No. 9 Aim and Objectives: Preparation of pattern layout: Casting layout sheet, Pattern layout sheet ,Core box layout sheet and cross sectional view of moulding box sheet using CATIA V5 outcomes: Able to prepare and dsign pattern by considering pattern allowances and utilize knowledge of CAD/CAM Theoretical Background: Types of Pattern, parting plane, core print, pattern making tools, CATIA V5 3D Modelling software Experimentation:	04 Hrs.
Experiment No. 10 Aim and Objectives: Casting simulation and design of riser for given casting using virtual simulation outcomes: Able to design a feeder of optimum size to increase casting yield Theoretical Background: Riser, Feeder, Feedaids, Directional Solidification, Riser Location, Virtual Simulation Software, Optimization Meaning. Experimentation:	02 Hrs.
Experiment No. 11 Aim and Objectives: Industrial visit for studying casting operations in a Ferrous / Non ferrous oundry. outcomes: Able to understand basic casting processes Theoretical Background: Knowledge of Basic casting operations. Experimentation:	04 Hrs.
Textbooks:	
 Manufacturing Technology: Foundry, Forming & Welding by P. N. Rao (TMH) Metal Casting – Principles & Practice by T. V. Rama Rao (New Age International P A Text Book on Foundry Technology by M. Lal, O. P. Khanna(Dhanpat Rai & Co.) A Course on Workshop Technology – Vol. 1 by B. S. Raghuvanshi; (Dhanpat Rai & Fundamentals of Metal Casting by P. C. Mukharjee (Oxford & IBH Publishing Co). Principles of Foundry Technology by P. L. Jain (Tata McGraw Hill) Foundry Practice by N. D. Titov (MIR) Foundry Engineering by Taylor, Flemings, Wulff (Wiley Eastern Ltd.) Principles of Metal Casting by Heine, Loper, Rosenthal 	vt. Ltd.)) 2 Co.)

Г

Refer	ences:
[1]	Casting Technology And Casting Alloys by A.K.Chakrabarti, (PHL Learning Pvt Ltd.)
[2]	Iron and steel making by Ahindra Ghosh, Amit Chatterjee (PHL Learning Pvt Ltd.)
[3]	Complete Casting Handbook-Metal Casting Processes, Metallurgy, Techniques & Design by John
	Campbell (BH Publication
[4]	Casting simulation website www.efoundryiitb.ac.in
[5]	The FOSECO Foundry man's handbook 10th edition by Butter Worth-Heinemann (BH
5.0	Publication)
[6]	ASM Handbook Volume 15 on casting
Expe	riment wise Measurable students Learning Outcomes:
[1]	Able to determine GFN of foundry sand and will able to judge its effect on quality of casting
[2]	Able to derermine percentage of clay content present in given foundry sand and will able to judge
	its effect on quality of casting
[3]	Able to determine percentage of Moisture content present in given foundry sand and will able to
	judge its effect on quality of casting
[4]	Able to derermine percentage of Moisture content present in given foundry Permeability of mold
	and will able to judge its effect on quality of casting
[5]	Able to determine percentage of Moisture content present in given foundry Permeability of mold
	and will able to judge its effect on quality of casting
[6]	Able to determine mold hardness number and will able to judge its effect on quality of casting
[7]	Able to study working of sand muller and to carry out sand preperation
[8]	Abe to prepare sand mold specimen by using Sand Rammer
[9]	Able to prepare and dsign pattern by considering pattern allowances and utilize knowledge of
[10]	Able to design a feeder of optimum size to increase casting yield
[11]	Able to understand basic casting processes

Title of	f the	Cour	se:	Ther	mal I	Engin	eerir	ng-La	ıb				L	Τ	Р	C	red
Course	ourse Code: UPRD0332										-	-	2		1		
Course	Pre-l	Requi	site:	Basic	Mec	hanic	al En	ginee	ring,	Physi	ics						
Course	Desc	riptio	n: Ba	sic Co	oncep	ots in T	Therm	odyna	amics	, Wor	king of	f Stea	m turb	ine ar	nd Co	onde	ense
Workin	g Prin	ciple	of Re	ciproc	cating	; comp	oresso	r, Ŵo	rking	Princ	iple of	I. C.	Engine	e.			
Course	e Obj	ectiv	es:	1		•	6.04-	D	1	_							
1. 10 U	naer	stand	type	s and	work	ting c	of Ste	am B	others	5. 1							
2. 10 d 2. Dete	etern	iine t		ermai	conc					<i>)</i> d.							
5. Dete 4 To a	rinne	e peri	orma	ince p		neter () 1.0	. Eng	gine.	r							
Course	e Lea	rning	g Out	t com	es:	proca	ung	Com	JIESSC	01							
CO	A ft	on the		nloti	on of	ftha	0.01110	no the	stud	onto	hould	ha	Plaa	m'a (¹ ogn	itix	0
CO	Alu	er ine	e con	ipieu	on o	the	cours	se the	e stua	lent s	nouia	be	laval				<u>e</u>
CO1			toom	Roil	raan	lator	n 005	dance	r 0					De	scrip doret	nor	line
$\frac{001}{002}$	Und	orstor	nealli	dos et	15 all	tronge	ii con	uense	18.				<u>п</u>	Un	doret	and	line
$\frac{002}{002}$	Und Sol-	eistar	norfer			uansi			naira	and			<u>ш</u> ш	Un Arr	nluerst	alla	ung
CUS	Reci	inroca	perior	compr	e par	amete	15 01 1	I.U. El	ngine	and			111	Ap	prym	ıg	
<u>CO4</u>	Solu	piùca e for	$\frac{c}{C}$	P of P	efric	eratin	a evet	em					Ш	An	nlvin	σ	
C04	2010	6 101	C.O.	FUIN	cing	eraun	g sysi	CIII.					m	Ap	prym	g	
CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO	2 PS	03	PS
CO1	3																
CO2		3															
CO3		3															
CO4		2															
Agreem	ent: 3	-H1gh	n, 2-M	lediur	n, I-L	LOW.											
	mont	a •															
Toocha	nenu r As	5 . 50660	nont.														
One co	mnor	ent c	of In S	Seme	ster F	Evalua	ation	(ISE)									
Asses	smen	t	1 111 1	Jenne		zvarue	uion		' Mark	c							
ISE	sinch	ι							25	3							
	haas	don	nroat	ioo1 ~	orfor	mad		·/ \/:	LJ Dro	inct a	anion	d/D	ragant	ntion	Gra		
Discuss	sion/	Inter	nal or	al etc	erior	mea/	Quiz	/ 1 VI1	11 -1 710	ject a	issigne	eu/ P1	lesenta	ation/	Gr0	up	
Course	e Con	tents	s:														
Experi	ment	t No.	1:	Stud	y and	l Den	onsti	ation	of St	eam 1	Boilers	5				2 H	Irs
Aim ar	nd Ol	bjecti	ives:-	- To	Class	ify an	d exr	lain v	worki	ng of	Steam	ı Boil	ers				
Outcor	nes:	Stude	ents a	are al	ole to	$\sim Clas$	ssifv	and e	expla	in wo	orking	of v	arious	s Stea	m		
Boilers				u		Ciu	J		r			'		2.00			
Evneri	mont	No	2														
シスリモレ	I I I CI I I		<i>4</i>														

Aim and Objectives: To determine the thermal conductivity of metal rod.	2 Hrs
Experiment No. 3:- Aim and Objectives: To determine experimental heat transfer coefficient for natural convection.	
 Experiment No. 4: Performance Trail on I. C. Engine test rig. Aim and Objectives: A trail on I. C. Engine to determine BSFC and Thermal Efficiency. Outcomes: Students are able to determine performance parameter of I.C. Engine. 	2 Hrs.
 Experiment No. 5: Trail on Reciprocating air Compressor Test rig. Aim and Objectives: A trial on reciprocating air compressor to determine isothermal and volumetric efficiency. Outcomes: Students are able to determine compressor efficiencies. 	2 Hrs.
Experiment No. 6: Trial on Reciprocating Compressor Aim and Objectives: Determination of COP of Vapour Compression Refrigeration system. Outcomes: Students are able to determine COP of Vapour Compression Refrigeration system.	2 Hrs
 Experiment No. 7: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories Outcomes: Students are able to Classify and explain working of various steam Boilers, mounting and accessories. 	2 Hrs.
Experiment No. 8: Industrial visit to study Refrigeration Plant. Aim and Objectives: To classify and explain working of Refrigeration system. Outcomes: Students are able to Classify and explain working of various Industrial Refrigeration system.	2 Hrs.
 Textbooks: 5. Basic and Applied Thermodynamics, 2nd Edition, Nag P. K., Tata McGraw-J 6. Thermodynamics: An Engineering Approach, 3rd Edition, Yunus Çengel and Michael, Boles, Tata McGraw Hill. 7. Yunus A Cengel, Heat transfer -A Practical Approach, McGraw Hill Publicat 8. Mathur and Sharma, Internal Combustion Engines, Dhanpat Rai and Co. References: 5. Sonntag, R. E., Borgnakke, C., & Wylen, G. J. V. Fundamentals of thermody 	Hill. I tion. mamics:
 Wiley. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. Fundamentals of Engineering Thermodynamics. V Ganeshan, Internal Combustion Engines, McGraw-Hill. David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine Frank P. Incroped Principles of Heat and Mass Transfer, Wiley; Seventh edition (2013) Experiment wise Measurable students Learning Outcomes: At the end of each experiment the students will be able to	era,

- 1. Determine the thermal conductivity of metallic rod.
- 2. Determine experimental heat transfer coefficient for natural convection.
 - 3. Determine A trail BSFC and Thermal Efficiency of I. C. Engine.
- 4. Determine isothermal and volumetric efficiency of reciprocating air compressor.
- 5. Determination of COP of Vapour Compression Refrigeration system.

Title of the Course: Computer Aided Machine	L	Т	Р	Credit
Drawing (CAMD)-Lab			2	1
Course Code: UPRD0333	-	-		
Course Pre-Requisite:				

Student must have knowledge and experience about drawing of basic concept in Engineering Graphics.

Course Description:

The students of Production Engineering Programme are mainly involved in drafting, manufacturing, inspection and planning activities (such as preparing process plans, preparing bill of materials, etc.) in industries. For all such activities, reference document is the drawing of component/assembly to be manufactured. In this context, it is of utmost importance to prepare, read and interpret these drawings correctly for production of components and assemblies accurately and precisely. The industrial practices of drafting are also important for the students to make them aware of drafting practices, symbols, codes, norms and standards generally used in industries.

Development of sketching ability also strengthens effective engineering communication & presentation. Now a days the market driven economy demands frequent changes in product design to suit the customer needs. With the introduction of computers the task of incorporating frequent changes as per requirement is becoming simpler. This course has been introduced at 2^{nd} year level in order to develop the skills in student so that they can generate various digital production drawings as required in industry using various CAD software.

Course Objetives:

- 1. To acquire the knowledge of CAD software and its features.
- 2. To familiarize the students with Indian Standards on drawing practices.
- 3. To acquire the knowledge of limits fits and tolerance pertaining to machine drawings
- 4. To impart knowledge of thread forms, fasteners, keys, joints and couplings.
- 5. To prepare a working drawing
- 6. To make the students understand and interpret drawings of machine components so as to prepare assembly drawings using CAD packages

Course Learning Outcomes:

At the end of this course the student will be able to:

- 1. Apply the CAD Software to represent various mechanical parts.
- 2. Use IS conventions in representing various machine components and materials.
- 3. Apply limits, fits and tolerance on machine drawings.
- 4. Acquire knowledge of thread forms, fasteners, keys, joints and couplings.
- 5. Develop detailed working drawings of machine component.
- 6. Prepare assembly drawings from detailed drawings.

		Bloo	m's Cognitive
CO	Course Outcome (CO) Statement	leve l	Descriptor
CO 1	Recall the basics of CAD command.	Ι	Rememberin g

CO 2	Relate basics of CAD in machine drawing.	II	Understandin g
CO 3	Apply IS conventions in machine components.	III	Applying
CO 4	Apply dimensions, limits, fits and tolerance on machine components.	III	Applying
CO 5	Develop detailed working drawings using machining symbols.	III	Applying
CO 6	Create assembly & detailed drawings.	V	Creating
Cours	e Outcomes:		

CO-PO Mapping:

СО	Р	РО	PO	PO	PO	РО	PO	РО	РО	PO1	PO1	PO1	PSO	PSO
	0	2	3	4	5	6	7	8	9	0	1	2	1	2
	1													
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	2	-	1	1	2	-	-	-	2	-
CO5	-	-	3	-	3	-	-	-	3	3	-	1	3	-
CO6	-	-	-	-	3	-	-	-	2	2	-	-	1	-

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE)

Assessment	Marks (Min. marks for passing=10)
ISE	25
ESE (P.O.E.)	25

ISE are based on practical Internal oral etc.

ESE: Assessment is based practical & oral examination.

Course Contents:

Practical No.1:	
Aim :- Use Drawing aids and Editing Commands	3
Outcomes: Able to creating objects (2D) using draw commands.	
Practical No.2:	
Aim: - Basic Dimensioning, Hatching, Blocks and Views on machine	2
component.	
Outcomes: - Able to apply basic dimensioning, hatching, blocks and views	
on machine component.	
Practical No.3:	
Aim: - To use IS conventions in various machine components and materials.	3
Outcomes: - Able to use IS conventions in various machine components	
and materials.	

Practical No.4:						
Aim: - To select & apply limits, fits and tolerance on machine drawings.	3					
Outcomes: - Able to select & apply limits, fits and tolerances on machine						
drawings.						
Practical No.5:						
Aim: - To acquire knowledge of threads forms, fasteners, keys & machining	3					
symbols.						
Outcomes: - Able to acquire knowledge of threads forms, fasteners, keys &						
machining symbols.						
Practical No.6:						
Aim: - To develop detailed working drawings of machine component.	4					
Outcomes: - Able to develop detailed working drawings of machine						
component.						
Practical No.7:						
Aim: - To prepare detailed & assembly drawings.	6					
Outcomes: - Able to prepare detailed & assembly drawings.						
Textbooks:						
 Dr. Dhawan, "A Text Book of Machine Drawing," S. Chand publications 2014 Siddheswar, Kannaiyah, and Shastry VVS, "Machine Drawing", TMH G. Pohit and G. Ghosh, Machine Drawing with AutoCAD –Pearson Education, 2005 P.S. Gill, Machine Drawing - S. K. Kataria and Sons, Delhi, 2002 AutoCAD, 14 for Engineering Drawing Made Easy by P. Nagasawara Pao, TMH 2010 						
References:	,					
1 IS: SP 46- Engineering drawing practice for schools and colleges, BIS Public	cation.					
2. Graphic Science & Design by French, Vierck & Foster (McGraw Hill)						
3. Production Drawing: K L Narayana, P Kannaiah, K Venketa Reddy, (New Age International)4. Machine drawing with Auto CAD Goutam						
5. An Introduction to AutoCAD 2000 by A.Yarwood, Longman Publisher.						
Experiment wise Measurable students Learning Outcomes:						
 Able to creating objects (2D) using draw commands. Able to apply basic dimensioning, hatching, blocks and views on machine component. Able to use IS conventions in various machine components and materials. Able to select & apply limits, fits and tolerances on machine drawings. Able to acquire knowledge of threads forms, fasteners, keys & machining symbols. Able to develop detailed working drawings of machine component. 						
 7. Able to prepare detailed & assembly drawings. 						

PROJECT BASED LEARNING (PBL) S.E. PRODUCTION (SEM-3)

SUB-COMPUTER AIDED MACHINE DRAWING (CAMD) Title of	Р	Credit		
the Course: Computer Aided Machine Drawing (CAMD)-Lab				
Course Code: UPRD0333				
	-	-	2	1
Course Contents:			Hrs	•
Practical No.1:				
Aim :- Use Drawing aids and Editing Commands			3	
Outcomes: Able to creating objects (2D) using draw commands.				
Practical No.2:				
Aim: - Basic Dimensioning, Hatching, Blocks and Views on machine componen	t.		2	
Outcomes: - Able to apply basic dimensioning, hatching, blocks and views on m	achi	ine	4	
component.				
Practical No.3:				
Aim: - To use IS conventions in various machine components and materials.		3		
Outcomes: - Able to use IS conventions in various machine components and mat	ls.			
Practical No.4:				
Aim: - To select & apply limits, fits and tolerance on machine drawings.			3	
Outcomes: - Able to select & apply limits, fits and tolerances on machine drawin				
Practical No.5:				
Aim: - To acquire knowledge of threads forms, fasteners, keys & machining sym	bols	5.	2	
Outcomes: - Able to acquire knowledge of threads forms, fasteners, keys & mac	hini	ng	3	
symbols.				
Practical No.6:				
Aim: - To develop detailed working drawings of machine component.		4		
Outcomes: - Able to develop detailed working drawings of machine component.				
Practical No.7:				
Aim: - To prepare detailed & assembly drawings.		6		
Outcomes: - Able to prepare detailed & assembly drawings.				

Activities with Duration:-

Practic	Title	Activity/Task	Duration
al No.			
1	Use Drawing aids and Editing Commands	Give a simple Product drawing using	2 Week
	<i>Content:</i> -Auto-CAD command	CAD command.	
2	Basic Dimensioning, Hatching, Blocks and Views on machine component. <i>Content:</i> -Annotation, Hatching, Dimensioning, Sheet Block Details, Different Views	 Prepare drawing & add dimensioning, hatching. Prepare Title Blocks & Views 	1 Week
3	To use IS conventions in various machine components and materials. <i>Content:</i> -Material Symbols, Welding Symbols, Gear, Spring symbols, Threading Symbols	 Draw a separate Gear, spring, thread Place I.S. symbols on prepared drawing. 	1 Week

4	To select & apply limits, fits and tolerance on machine drawings. <i>Content:</i> -Introduction, Importance, Fits and Types of Fit, Limits & Types, Tolerance.	□ Place limits, fits, Tolerances on drawing	2 Week
5	To acquire knowledge of threads forms, fasteners, keys & machining symbols. <i>Content:-</i> Thread & Screw Terminology, Form of Threads, Types of Bolt, Nut (Fasters),Types of Keys	□ Draw thread, bolt, Nut, Keys separately.	2 Week
6	To develop detailed working drawings of machine component. <i>Content:</i> -GD&T Concept, GD&T Symbols, M/C ing Symbols.	□ Place all GD&T symbol, M/C ing Symbols on component drawing	1 Week
7	To prepare detailed & assembly drawings. <i>Content:</i> -Draw Detail Drawing, Assembly Drawing, Preparation of Bill of Material	 Draw a part drawing of small assembly component. Draw an simple assembly drawing from part drawing. 	3 Week
Total We	ek	12 Week	

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE)

Component	Marks						
Component	Max	Min for passing					
ISE	25	10					
ESE(POE)	25	10					

Title of the Course: Workshop Practice – II	L	Т	Р	Credit
Course Code: UPRD0334	-	-	2	1
Course Pre-Bequisite:				

1. Fundamentals of drawing

- Fundamentals of drawing
 Fundamentals of metal cutting
- Cutting machine information

Course Description:

The workshop training aims at providing you practical experience in production of components as well as knowledge and understanding about materials and their machining and finishing. The Machine shop is the heart and soul of Production engineering branch. It deals with the various machining operations such as turning, milling, shaping, thread cutting, slotting, drilling etc.

Course Objectives:

1. To practice basic metal cutting processes and acquire elementary skills.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Identify different components of lathe according to their function	2	Identify	
CO2	Demonstrate basic operations performed on lathe machine	2	Demonstrate	
CO3	Attempt grinding of single point cutting tool	3	Attempt	
CO4	Perform different operations on lathe machine to convert given	5	Perform	
	raw material into finished job as per specified drawing			

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1													
CO2		2												
CO3				2										
CO4						2		2				2		3

Assessments :

Teacher Assessment:

Assessment	Marks				
ISE	25				
ISE: Assessment is based on 100% lab work.					
Course Contents:					
Lab section 1:Introduction to basic operations and tools					
Lab section 2: Drawing reading and process sequence					
Lab section 3: Manufacturing of components v	vhich will include the following	10 Hrs.			
operations, facing, plain turning, step turning,	external taper turning				
Lab section 4: Manufacturing of components which will include the following					
operations, drilling, boring, External threading, internal threading, knurling,					
Parting					
Note:-					
1 Charlente al call and a set of a set		1			

- 1. Students should prepare setup wise working drawing showing all the details in work diary.
- 2. Dimensional accuracy is of prime importance.
- 3. Student must maintain work diary showing regular progress in the semester.

4. The external practical examination shall include execution of one assigned job & its operation on lathe machine followed by an oral examination.

Textbooks:

1. Workshop Technology Vol. I & II by Hajra Chaudhary, (Media Promoters & Publishers Pvt. Ltd.)

- 2. Workshop Technology Vol. I , II and III by W.A.J. Chapman, (ELBS)
- 3. Workshop Technology Vol. II by Bawa H. S. (TMH)
- 4. A Course on Workshop Technology Vol. 1 by B. S. Raghuvanshi; (Dhanpat Rai & Co.)
- 5. Workshop Technology Vol. III Chapman (ELBS)

Experiment wise Measurable students Learning Outcomes:

- 1. Student shall be able to explain basic machining operations
- 2. Student shall be able to decide process sequence
- 3. Student shall be able to perform facing, plain turning, step turning, external taper turning operation
- 4. Student shall be able to perform drilling, boring, external threading, internal threading, knurling, parting operation

Title of the Course: Mini Project	L	Т	Р	Credit
Course Code: UPRD0341	-	-	2	1
Course Pre-Requisite:				

Basic Knowledge of Mechanism.

Course Description:

The mini project is designed to help students develop practical ability and knowledge about practical tools / techniques in order to solve real life problems related to the industry. The course Mini Project is one that involves practical work for understanding and solving problems in the field of mechanization & manufacturing. A group of Students will select topic or issue that they learnt in previous semesters or year. Each group of students will have to prepare proper documentation consisting of problem definition, objectives, Specification, conceptual drawing, final drawing, selection of materials, Manufacturing methods, Testing Methods & costing. The project work will be presented by students in the form of physical model to the panel of Examiners.

Course Objectives:

- 1. Learn practically and apply knowledge.
- 2. Realize the value of practical training.
- 3. To provide employers a chance to distinguish between students with related backgrounds.
- 4. To encourage hands-on working skills by fabricating simple working mechanisms illustrating technical principles.
- 5. To develop students to work as a team member or interpersonal skill.
- 6. To increase writing & communication skill.

Course Learning Outcomes:

Students will be able to

- 1. Survey literature for problem identification.
- 2. Apply basic engineering fundamentals in the domain of practical applications to analyze a concept/system/machine operation/process etc.
- 3. Cultivate the habit of working in a team and attempt a problem solution in a right approach
- 4. Manufacture a physical working model/prototype/scaled model/ CAD model etc.
- 5. Prepare project report and present at the end of semester.

Course Outcome

CO	Course Outcome (CO) Statement	Bloom's Cognitive			
CO	Course Outcome (CO) Statement	level	Descriptor		
CO1	Recall the topics covered in last academic year/semester.	Ι	Remembering		
CO2	Relate the topics covered with identified problem definition.	II	Understanding		
CO3	Apply knowledge and create conceptual drawing.	III	Applying		
CO4	Analyse different conceptual drawing on the basis of	IV	Analyzing		
	different factors.				
CO5	Evaluate appropriate process for manufacturing.	V	Evaluating		
CO6	Create & present a working model/prototype/ CAD model	VI	Creating		
	etc.				
CO-PO	Manning				

CO	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO	1	-	-	-	-	-	-	-	-	-	-	-	-	-
1														
CO	2	-	-	-	-	-	-	-	-	-	-	-	-	-
2														
CO	3	-	2	-	3	-	-	-	-	-	-	-	3	2
3														
CO	-	2	-	2	-	2	-	-	3	-	2	-	2	1
4														
CO	-	-	-	-	-	-	2	-	-	-	-	-	-	-
5														
CO	-	-	-	-	-	-	-	-	-	3		3	-	-
6														

Assessments :

Teacher Assessment

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE)

Assessment	Marks (Minimum for passing=10)
ISE	25
ESE (P.O.E.)	25

ISE are based on practical Internal oral etc.

ESE: Assessment is based practical & oral examination.

Guidelines

- 1. Mini Project can be an individual or a group activity depending on the depth and scope of the topic.
- 2. The project work can be any of the form given below (but not restricted to below mentioned topics only): a) Making physical working models, prototypes, scaled models, of a concept machine.
 - b) Making virtual / CAD models of machines / concepts.
 - c) Making study, modeling, of a system / machine operation / process.
 - d) Making study / teaching modules of a sufficiently complex topic for pedagogy purposes.
- 3. A complete assembly and details drawings of the project should be submitted along with a detailed project report, where applicable.
- 4. A Detailed background / field / literature survey, related to the topic must be made presented in the report.
- 5. Entire work should be presented at the end of the Semester.

Outcomes:

- 1. Students will be able to use their knowledge of mechanisms in building working models
- 2. Able to work in teams
- 3. Improves leadership quality
| Title of | f the Course: Industrial Hydraulics and Pneumatics | L | Т | Р | Credit | | | | |
|----------|---|----------|-----------------|----------|------------|--|--|--|--|
| Course | e Code: UPRD0401 | | | | | | | | |
| | | 3 | - | - | 3 | | | | |
| Course | Pre-Requisite: Fluid Mechanics | | | | | | | | |
| Course | Description: This course aims to impart knowledge of fluid power | er syste | ems su | ich as I | hydraulics | | | | |
| and pn | eumatics w.r.t. their components, circuits and their applicati | ons, d | esign | of sy | stem and | | | | |
| mainten | ance and troubleshooting of the system. | | | | | | | | |
| Course | e Objectives: | | | | | | | | |
| 1. To st | udy application of fluid mechanics and governing laws in hydrauli | c and p | oneun | natic sy | stems. | | | | |
| 2. Study | of working principle of various components used in hydraulic and | d pneu | matic | system | 18. | | | | |
| 3. Study | of ISO/JIC symbols of fluid power systems. | | | | | | | | |
| 4. Selec | tion of different components used in hydraulic and pneumatic syst | ems. | | | | | | | |
| 5. Deve | lopment of hydraulic and pneumatic circuits. | | | | | | | | |
| 6. Indus | trial applications of hydraulic and pneumatic circuits. | | | | | | | | |
| Course | e Learning Outcomes: | | | | - | | | | |
|
 | | | | | | | | | |
| CO | After the completion of the course the student should be | e Blo | om's | Cogn | itive | | | | |
| | able to | | | | | | | | |
| | level Descriptor | | | | | | | | |
| CO1 | Students shall demonstrate an understanding of fluid power
terms, concepts, and calculations for simple applications | 1 | 1 Understanding | | | | | | |
| CO2 | The student will be able to select components for | ~ | | | | | | | |

	application of fluid power (Hydraulics and Pneumatics) in Industries.	2	Applying
CO3	Students shall demonstrate the ability to use and apply hydraulic, Pneumatic and Electro hydraulic schematics to	3	Applying
	build circuits.		

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1		2			2	2	2		2			1	
CO2	2		2		1	2	2	2	2	2			2	
CO3	2		3		1	3	3	2	3	2				3

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:	6 Hrs.
Fundamental concepts of fluid & Introduction to fluid power : Classification of	
fluids, derivation of Pascal's law, continuity equation and Bernoulli's equation	
,Introduction to fluid power: Types, advantages and applications, IService	
properties of hydraulic fluid, Types of hydraulic fluids, selection of fluid, effect of	
temperature on fluids, ISO/JIC symbols of various elements of fluid power	
systems.	
Unit 2:	8 Hrs.
Hydraulic system elements: conditioning of fluids, study of reservoirs, strainers,	
filters, heat exchangers, effect of temperature on fluid, pumps – types, working,	
characteristics and applications, power and efficiency calculations (numerical	
treatment expected), types of conductors and connectors, their selection, seals and	
packing – types, materials, applications, hydraulic actuators – linear and rotary -	
types, working, cushioning effect, mounting, calculation of force and velocity of	
piston (numerical treatment expected), system components: accumulators,	
intensifiers, their types, working, applications,	
Unit 3:	6 Hrs.
Control Elements: a)construction and working of pressure control valves – direct	
acting type, pilot operated, sequence, counterbalancing, unloading, pressure	
reducing, b)Direction control valves – types, construction and working, spool	
actuation methods, spool center positions, c)Flow control valves – compensated	
and non compensated types, construction and working.	4.77
Unit 4:	4 Hrs.
Pneumatics: Basic principle, applications, comparison with hydraulic system,	
pheumatic system elements. Piping, materials and pressure ratings, piping layout,	
calculation of pressure drop in pheumatic line, an compressors, types, selection	
Unit 5.	1 Ung
Difference on the section of the sec	4 1115.
flow control valves working of variable flow control quick exhaust time delay	
and shuttle valve. Fluidics: Concept study of logic gates and applications	
Unit 6.	8 Hrs
Hydraulic circuits and their applications: Speed control circuits, regenerative	0 1115.
riveraule circuits and then applications. Speed control circuits, regenerative,	
sequencing, counterbalancing, interlocking, synchronizing circuits, use of	
accumulator and intensifier, methodology to design hydraulic circuits.,	
maintenance of fluid power system, Electro -Hydro sytems: concept, working	
and applications (descriptive treatment only), Pneumatic circuits: Basic circuit,	
impulse operation, speed control, sequencing, time delay circuits and their	
applications, pneumatic clamping systems, pneumatic power tools, maintenance	
of pneumatic system, Selection of different components such as reservoir, various	
valves, actuators, filters, pumps based on design. (Students are advised to refer	
manufacturers' catalogues)	
Texthooks.	L
1 "Oil hydraulics Systems" S R Mujumdar Tata McGraw Hill Publication	
2. "Pneumatic Systems", S. R. Mujumdar- Tata McGraw Hill Publication	
3. "Industrial Fluid Power". D. S. Pawaskar, Nishant Prakashan	

4. "Hydraulics and Pneumatics", Shaikh and Khan, R.K. Publication.

- 5. "Fluid Power with Application", Esposito, Pearson Education, 7th Edition.
- 6. "Basic Hydraulic Festo Manual"
- 7. "Basic Pneumatic Festo Manual"
- 8. "Industrial Fluid Power", S.S. Kuber, Nirali Prakashan, 3rd Edition.

9. "Hydraulics and Pnuematics", Dr. Anand Bewoor, Late S.K.Ponde, Nirali Prakashan.

References:

- 1. "Hydraulic and Pneumatic", H.L. Stewart, Industrial Press.
- 2. "Industrial Hydraulic", J. J. Pipenger, Tata McGraw Hill.
- 3. "Power Hydraulics", Goodwin 1st Edition.
- 4. "Introduction to Hydraulic and Pneumatics", S. Ilango and V Soundararajan, Prentice Hall of India, 2nd Edition.
- 5. "Pneumatic Control", Joji P., Wiley., 1st Edition.
- 6. "Fluid Power", Jagadeesha T., Wiley Publications.
- 7. Eaton (Vickers) Manual.
- 8. Product Manuals and books from Vickers/ Eaton, FESTO, SMC pneumatics.

Unit wise Measurable students Learning Outcomes:

After completion of units, students are able to:

Understand the fluid power symbols used in hydraulics and pneumatics, various control elements required in hydraulics and pneumatics, different circuits in hydraulics and pneumatics.

Title of	f the Co	ourse: S	Strengt	h of M	ateria	ls			Ι	4	Т	P	Credit	
Course Code: UPRD0402										3	I	-	3	
Course	Course Pre-Requisite: Types of forces, resolution of forces, geometrical relations													
Course Description: The study of strength of materials often refers to various methods of calculating the strength and strains in structural members, such as because columns, and shafts														
The methods employed to predict the response of a structure under loading and its														
Ine m	susceptibility to various failure modes takes into account the properties of the materials such													
suscept	s its vield strength, ultimate strength, Young's modulus, and Poisson's ratio: in addition the													
as its y	nechanical element's geometric properties such as its length, width, thickness boundary													
constra	constraints and abrupt changes in geometry.													
Course Objectives:														
1. Demonstrate knowledge of fundamental concepts and problem solving techniques.														
associa	ted with	stress.	strain.	stress-	strain d	liagram	applied	to britt	le an	d du	ictile	mater	ials.	
2. Appl	ications	s involv	ving axi	al load	ing, tor	sion, a	nd bend	ing, incl	uding	g in	trodu	ctory-	level	
statical	ly indet	erminat	te syste	ms	U,			U	·			5		
3. To h	ave und	lerstand	ling of o	differer	nt loadi	ng con	ditions a	and its g	raphi	cal	repre	sentat	ion to	
model o	design p	oroblem	ı											
4. Accu	imulate	signific	cant pra	actice in	n solvir	ng a vai	riety of	applicati	ion p	robl	lems	in soli	d	
mechan	nics invo	olving o	concept	s of pri	nciple	stress-s	strain, d	eflectior	n of b	ean	ns and	d strai	n	
energy.														
Course Learning Outcomes:														
										<u>D1</u>	,	0	·.·	
CO	After	the cor	npletio	n of th	e cours	se the s	tudent	should	be	BIO	$\frac{\text{om's}}{1 + \Gamma}$	Cogn	itive	
<u>CO1</u>	able to	0 hasia a	onconto	in state	trano1 ma	ahania	to colve	aimmla		level Descriptor				
COI	Define	Dasic co	oncepts	In struc	turai me	echanics	s to solve	simple		1	K	Remember		
	problei	ns.												
CO2	Develo	p Shear	· Force a	nd Ben	ding Mo	oment d	iagram f	or given		3	A	pply		
00-	loading	2 conditi	ion of be	eam.				<u>8</u> - · · · ·		0		-PP-J		
CO3	Exami	ne the ty	pes of s	tresses	develop	ed in st	atically o	letermina	ate 4	4	A	nalyz	e	
	membe	er due to	o loading	g condit	ion.									
<u> </u>	a 1.	.1	<u> </u>		1.D					_				
CO4	Combi	ne the e	ffects of	Direct	and Ber	nding st	ress on			6	C	reate		
	eccenti	rically lo	baded st	ructures										
COS	Constr	uct Mol	nr's Ciro	le to cal	lculate v	values o	f Princir	le Stress	es	6		reate		
	and fin	ding no	sition of	f Princir	ole plan	es.	i i iniciț	10 51035		0		realt		
L		-0 10			r - will				I					
	Man	inci												
	¹ Mapp	ong:	2	4	5	6	7	0	0	1	10	11	12	
	2	4	3	4	3	U	/	0	7	+	LV	11	14	
CO1	2		1				+			+			+	
$\frac{CO2}{CO3}$	1	2	3							+				
C03	1	2	2							+			+	
CO4		2 2	$\frac{2}{2}$							+			+	
003	1	4	4	1	1		1	1						

3: High, 2: Medium, 1: Low

Assessments :		
Teacher Assessment:		
Two components of In Semester Evaluation (IS	SE), One Mid Semester Examination	(MSE)
and one EndSemester Examination (ESE) having	ng 20%, 30% and 50% weights respe	ctively.
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussi	ons etc.
MSE: Assessment is based on 50% of course c	ontent (Normally first three modules)	
ESE: Assessment is based on 100% course con	tent with 60-70% weightage for cours	e content
(normally last three modules) covered after MS	NE	e content
Course Contents:		
Unit 1. Stross Stroin Strass Strain diagram	s factor of safety failure stress	0 H rc
working stress, Modulus of Flasticity Digidity	Pulk Volume relations Hock's	71115.
working suess, modulus of Elasticity, Righting	, Bulk Volulle, lelations, Hook S	
law, Poissoii s lauo, shear suess and shear suair	i, stress tensor, strain tensor, stress	
strain relations, strain energy due to axial force	s, strain energy in bending.	7.11
Unit 2: Snear force & Bending moments -Sh	ear force and Bending moment	/ Hrs.
computation and diagrams and diagram for stat	fically determinate beams.	
Application for point loads, UDL, UVL, Intern	nediate couples on simply	
supported and cantilever beams. Locating the p	place of contraflecture and	
maximum bending moments.		
Unit 3: Bending and Shear stress -Theory straight prismatic beams, Role of Moment materials, Neural Axis, Section modulus, mo bending, beams of uniform strength. Shear stree Distribution of shear stresses across plane se purposes.	of Bending, Flexural formula for of Inertia, for economic use of oment of resistance, stresses due to esses in beams due to bending loads, ections used for common structural	9 Hrs
Unit 4: : Direct and bending stresses- Direct	and Bending stresses: Axial loading	4 Hrs.
combined with bending, eccentric loading of	on plane sections, core of section,	
middle third rule, applications to the problems	s of crane hooks, machine columns,	
brackets etc.		
Unit 5: Deflection of beams -Deflection of	statically determinate beams due to	6 Hrs.
bending loads. Macaulay's method. Appli	cation for simply supported and	
cantilever beams. Struts subjected to axial lo	pading, end connections, Empirical	
design formulae Euler's and Rankine's method	ds	
Unit 6: Principle stresses and principle plan	es - Principal stresses and planes	5 Hrs.
general equations for direct stresses in mutually	v perpendicular directions along	
with shear stress Mohr's circle determination	of maximum shear stress and their	
nlanes		
Textbooks:		1
1 Ferdinand P Beer and E R Johnston	IR John Dewolf Mechanics of	Materials
3/e McGraw Hill Rook Company	sice sound bewon, internations of	1,10011015
2 Timoshenko and Young Elements of Streng	th of Materials Fast-Wast Press Dut	Limited
2. Thioshenko and Toung. Elements of Stielly	gui of iviatoriais, East- w Est F1Ess. FVl	. Linneu,
2 Dainut Strangth of Matariala Larmi Dublia	ation	
J. Kajput, Suchgui Of Watchals, Laxini Publica	Dublication House	
4. S.D Junnerkar. Mechanics of structure Vol I	, ruoncation nouse	

- 5. Bansal, Charotor Strength of Materials, Laxmi Publication
- 6. E.P.Popov "Mechanics of Materials" Prentice Hall Inc.
- 7. Andrew P. & Singer F.L., "Strength Of Materials", Harper & Row Publishers
- 8. G.H. Rider. "Strength of Materials", Mac Millan India Ltd.
- 9. Mechanics of Materials Hibbler 2e Pearson Education Publication

References:

- 1. Den Hartong, Strength of Materials, McGraw Hill, New York.
- 2. H. BURR and John Cheatam, Mechanical Analysis and Design, PHI, New Delhi.
- 3. Robert Norton, Machine Design, Prentice Hall

Unit 1 Const SI Unit 2 D Unit 3 SI D D SI D SI D SI D SI D SI D SI D S	Concept of stress, train Thear Force and ending Moment Diagram	 ULO1.1: To use deformation formula for calculation stress and strain. ULO1.2: To differentiate normal and shearing stress and strain. ULO2.1: To study effect of point load, UDL and UVL on Shear Force and Bending Moment Diagram. ULO2.2: To study change in Shear Force and Bending Moment Diagram due to loading conditions. 					
Unit 1 Si Unit 2 D Unit 3 B ar Si	train Thear Force and Thending Moment Diagram	 strain. ULO1.2: To differentiate normal and shearing stress and strain. ULO2.1: To study effect of point load, UDL and UVL on Shear Force and Bending Moment Diagram. ULO2.2: To study change in Shear Force and Bending Moment Diagram due to loading conditions 					
Unit 2 SI D Unit 3 B SI D D	Chear Force and ending Moment Diagram	 ULO1.2: To differentiate normal and shearing stress and strain. ULO2.1: To study effect of point load, UDL and UVL on Shear Force and Bending Moment Diagram. ULO2.2: To study change in Shear Force and Bending Moment Diagram due to loading conditions. 					
Unit 2 SI be D B Unit 3 SI	bhear Force and ending Moment Diagram Bending stresses	ULO2.1: To study effect of point load, UDL and UVL on ShearForce and Bending Moment Diagram.ULO2.2: To study change in Shear Force and Bending MomentDiagram due to loading conditions					
Unit 2 be D Unit 3 ar St	ending Moment Diagram	Force and Bending Moment Diagram. ULO2.2: To study change in Shear Force and Bending Moment Diagram due to loading conditions					
Unit 3 ar	Diagram Bending stresses	ULO2.2: To study change in Shear Force and Bending Moment Diagram due to loading conditions					
Unit 3 ar	Bending stresses	Diagram due to loading conditions					
Unit 3 ar	Bending stresses	Diagram due to loading conditions.					
Unit 3 ar	Johume subside 1	ULO 3.1: To use flexure formula for calculation of bending stresses					
	nd Shearing	and plotting of stress distribution diagram.					
	tresses	ULO3.2: To use shear stress formula for calculation of shearing					
~	1103303	stresses and plotting of shear stress distribution diagram.					
Л	Direct stresses and	ULO4.1: To calculate direct stresses and bending stresses.					
Unit 4 $\begin{bmatrix} D \\ b \end{bmatrix}$	ending stresses and	ULO4.2: To study effect of both direct and bending stresses due to					
U.	chang stresses	eccentric loading.					
		ULO 5.1: To use Maclaulay's method for calculation of deflection					
Unit 5	Deflection of	of beam.					
be be	eams	ULO 5.2: To compare critical or cripping load by using Euler's and					
		Rankine's method of axially loaded struts and columns.					
		ULO 6.1: To calculate normal and shearing stresses on inclined					
D	Principle stresses	plane for given loading conditions.					
Unit 6 ar	nd Principle	ULO 6.2: To calculate Principle stresses and finding position of					
	lanes	Principle planes by using analytical formulae and graphical Mohr's					
pi pi	lanes	circle.					

Title of	the Course: <u>Metal Joining Technology</u>	L	Т	Р	Credit								
Course	Code: UPRD0403	3	-	-	3								
Course	Course Pre-Requisite:												
Type of	Type of power sources, polarity, voltage, ampere & enthusiasm to learn the subject.												
Course Description:													
Production engineers need to know different types of metal joining processes for production of intricate part in combination with the accuracy, tolerance & surface finish. The present course intends to give the exposure of various joining processes for a product whose scale ranges from miniature to extra-large. Since joining of metals is an important manufacturing route to fabricate bulk storage and processing equipment's. The subject focuses on knowledge and understanding of various joining process, equipment's, testing methods the underlying principles and their relative merits and demerits. It also helps them to understand the advancement of technology in manufacturing.													
Course	Objectives:												
1. To 2. To 3. To 4. To	 To understand & decide the pre-requisites, critical parameters of metal joining processes. To acquire knowledge of various metal joining processes. To select the appropriate metal joining process. To identify the cause of welding defects and remedies. 												
 To check the weldment quality using various inspection and testing methods. To get knowledge of advance metal joining processes. 													
Course	Learning Outcomes:												
After the 1. Ac 1. Ac Ac 2. Un 3. Sel 4. Ide 5. Ch 6. Ac Ac	completion of the course the student should be able to quire knowledge of various pre-requisites, critical parameters derstand the theoretical aspects of welding technology in dep lect the appropriate welding process for a particular applentify the welding defects & suggest their remedies. eck the weldment quality using various inspection and testir quire knowledge of advance metal joining processes.	s of me th. ication ng meth	tal join nods.	ing pro	cesses.								
Course (Jutcomes:												
СО	Course Outcome (CO) Statement		Bloor	n's Cog	gnitive								
		le	evel	Des	criptor								
CO1	List various pre-requisites, critical parameters & different type of metal joining processes.		Ι	Under	standing								
CO2	Classify & Compare different metal joining processes.		Π	Under	rstanding								
CO3	Select & Apply appropriate welding process for a particular application.		III	Ap	plying								
CO4	Inspect defects in weldments & discover related causes & remedies.	-	IV	Ana	lyzing								
CO5	Choose advanced metal joining processes according to requirement.		V	Eva	luating								
CO6	Choose appropriate DT or NDT Test for Testing.		V	Eva	luating								
СО-РО	Mapping:												

CO	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO	-	1	-	-	-	-	-	-	-	-	-	-	-	-
1														
CO	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2														
CO	2	-	2	-	-	-	1	2	-	-	-	-	-	-
3														
CO	-	-	3	-	-	-	-	-	-	-	-	-	-	-
4														
CO	-	-	-	-	1	-	-	-	-	-	-	-	-	-
4														
CO	-	-	-	-	-	1	-	-	2	-	-	-	2	-
5														
CO	-	-	-	2	3	-	-	-	-	-	1	2	2	-
6														

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	Hrs.
Unit 1: Fundamentals and Classification of Metal Joining Processes.	
1.a) Introduction & Classification of Metal Joining Processes. Comparison with other	
Joining Processes, Advantages, Disadvantages, Practical Applications. Welding	
Symbols. Basic & Supplementary Weld Symbols, Types of Weld Joints, Selection of	4
Weld Joint. Edge Preparation, Welding Positions, and Weld ability. Safety aspects in	
Metal joining processes.	
	1
1.b) Power Sources:- Type, Advantage ,Limitations, Application.Compair sources	
with each other.	
Unit 2: Arc Welding Processes	
2.a) Working Principle, Advantages, Limitation, Application of Carbon arc welding,	
Flux Shielded Metal arc Welding, Gravity Welding, Sub Merged Arc Welding,	3
GTAW Welding, GMAW Welding, CO2 Welding, Flux Cored Arc Welding	
(FCAW), Electro Slag welding, Electro Gas welding, Plasma Arc Welding.	

2.b) Welding Electrodes:- Types, Details, Categories of welding electrodes, Ingredients of coating and their functions, Selection of Electrodes, Classification and Coding of mild steel and low alloy steel electrodes as per Indian and American System.	2
Unit 3.	
3.a) Resistance Welding Processes :- Introduction, Principle, Working, Specifications, Equipments, Merits and demerits, applications of Spot welding, Seam welding, Projection Welding, Upset welding, Flash Butt welding, Percussion Welding. Heat Shrinkage, Heat Balance Methods.	3
3.b) Gas Welding:- Introduction, oxy-acetylene welding, oxy-hydrogen, air-acetylene welding. Principle of operation, types of welding flames, Lighting the torch, flame adjustment, gas welding techniques .welding techniques- leftward & rightward. Filler metals and fluxes, gas welding equipments, applications.	3
3.c) Soldering and Brazing: - Basic operational steps of Soldering & Brazing, Role of Flux, Types of Flux, Applications of soldering and brazing in Engineering. Comparison of Soldering, Brazing and Welding	2
Unit 4: 4.a) Solid State :- Introduction, Principle, Working, Specifications, Equipments, Merits and demerits, applications of Solid State welding Processes like Cold (or pressure welding), Diffusion(Bonding), Explosive welding, Friction ,Inertia and	2
forged welding.	1
4.b) Thermo chemical welding processes :- Thermit welding, atomic hydrogen welding	2
	-
 Unit 5: 5. a) Welding Distortion: Concept of distortion, Types of distortion, Controlling methods of welding Distortion 	2
 Unit 5: 5. a) Welding Distortion: Concept of distortion, Types of distortion, Controlling methods of welding Distortion 5. b) Weld Defects: - Introduction, type of defects in weldments, causes and remedies of defects. 	2 2 2
 Unit 5: 5. a) Welding Distortion: Concept of distortion, Types of distortion, Controlling methods of welding Distortion 5. b) Weld Defects: - Introduction, type of defects in weldments, causes and remedies of defects. 5. c) Quality Test: - Destructive Tests- Tensile, Bend, Impact, Nick Break, Hardness, Etch Tests. Non-Destructive Tests - Visual, Leak, X- ray and Gamma ray Radiography, Magnetic Particle Inspection, Dye, Fluorescent Penetrant Tests, Ultrasonic Inspection & Eddy Current Testing Pressure and Leak testing. 	2 2 3
 Unit 5: 5. a) Welding Distortion: Concept of distortion, Types of distortion, Controlling methods of welding Distortion 5. b) Weld Defects: - Introduction, type of defects in weldments, causes and remedies of defects. 5. c) Quality Test: - Destructive Tests- Tensile, Bend, Impact, Nick Break, Hardness, Etch Tests. Non-Destructive Tests - Visual, Leak, X- ray and Gamma ray Radiography, Magnetic Particle Inspection, Dye, Fluorescent Penetrant Tests, Ultrasonic Inspection & Eddy Current Testing Pressure and Leak testing. Unit 6: 	2 2 3
 Unit 5: 5. a) Welding Distortion: Concept of distortion, Types of distortion, Controlling methods of welding Distortion 5. b) Weld Defects: - Introduction, type of defects in weldments, causes and remedies of defects. 5. c) Quality Test: - Destructive Tests- Tensile, Bend, Impact, Nick Break, Hardness, Etch Tests. Non-Destructive Tests - Visual, Leak, X- ray and Gamma ray Radiography, Magnetic Particle Inspection, Dye, Fluorescent Penetrant Tests, Ultrasonic Inspection & Eddy Current Testing Pressure and Leak testing. Unit 6: 6.a) Welding Automation Introduction, Automation options, Simple Mechanization, Dedicated and Special Purpose Automation, Advantage, Limitations & Applications. 	2 2 3 2 2
 Unit 5: 5. a) Welding Distortion: Concept of distortion, Types of distortion, Controlling methods of welding Distortion 5. b) Weld Defects: - Introduction, type of defects in weldments, causes and remedies of defects. 5. c) Quality Test: - Destructive Tests- Tensile, Bend, Impact, Nick Break, Hardness, Etch Tests. Non-Destructive Tests - Visual, Leak, X- ray and Gamma ray Radiography, Magnetic Particle Inspection, Dye, Fluorescent Penetrant Tests, Ultrasonic Inspection & Eddy Current Testing Pressure and Leak testing. Unit 6: 6.a) Welding Automation Introduction, Automation options, Simple Mechanization, Dedicated and Special Purpose Automation, Advantage, Limitations & Applications. 6.b) Robotic Welding, Modular Automation, Programmable control, Remote Control Slave and Automated Systems, Advantage, Limitations & Applications. 	2 2 3 2 2 2 2

Textbooks:

- 1. Welding Technology –O.P. Khanna (Khanna Publisher)
- 2. Welding & Welding Technology-by Richard Little (TMH)
- 3. Welding Technology -N.K.Srinivasan (Khanna Publisher)
- 4. Welding Processes and Technology by Dr. R.S.Parmar (Khanna Publisher)

References:

- 1. Welding Science & Technology by Md. Ibrahim Khan (New Age International)
- 2. Welding Technology & Design by V.M.Radhakrishnan (New Age International Publisher)
- 3. Welding Guide and Handbook by- James E Brambaugh (Taraporwala Mumbai)
- 4. Welding by A.L. Davies (Cambridge University Press.)
- 5. Welding Process Technology P.T.Houltcroft (Cambridge University Press.)
- 6. Principles of Welding Technology- by L.M.Gourd (ELBS)
- 7. Advanced Welding systems- Vol...I ,II and III by Jeam Cornu (Jaico Publishing)
- 8. Arc and Gas welding- V. Rybakav (Mir Publication)
- 9. Practical Welding Technology- Rudy Molher (Industrial Press Inc.)

10.Manufacturing Technology: Foundry, Forming & Welding by P. N. Rao (TMH)

Unit wise Measurable students Learning Outcomes:

- 1. Understand & decide the pre-requisites, critical parameters of metal joining processes & power sources.
- 2. Get the knowledge of theoretical aspects of Arc welding Processes & Electrode
- 3. Get the knowledge of theoretical aspects of Resistance,Gas,Soldering,Brazing welding Processes
- 4. Understand working of different advanced metal joining processes.
- 5. Able to understand distortion, defects, causes, remedies & different DT & NDT Test.
- 6. Understand the need of automation, robotics and fixture in metal joining processes

Textbooks:

- 1. Welding Technology –O.P. Khanna (Khanna Publisher)
- 2. Welding & Welding Technology-by Richard Little (TMH)
- 3. Welding Technology -N.K.Srinivasan (Khanna Publisher)
- 4. Welding Processes and Technology by Dr. R.S.Parmar (Khanna Publisher)

References:

- 10. Welding Science & Technology by Md. Ibrahim Khan (New Age International)
- 11. Welding Technology & Design by V.M.Radhakrishnan (New Age International Publisher)
- 12. Welding Guide and Handbook by- James E Brambaugh (Taraporwala Mumbai)
- 13. Welding by A.L. Davies (Cambridge University Press.)
- 14. Welding Process Technology P.T.Houltcroft (Cambridge University Press.)
- 15. Principles of Welding Technology- by L.M.Gourd (ELBS)
- 16. Advanced Welding systems- Vol...I ,II and III by Jeam Cornu (Jaico Publishing)
- 17. Arc and Gas welding- V. Rybakav (Mir Publication)
- 18. Practical Welding Technology- Rudy Molher (Industrial Press Inc.)

10.Manufacturing Technology: Foundry, Forming & Welding by P. N. Rao (TMH)

Unit wise Measurable students Learning Outcomes:

- 7. Understand & decide the pre-requisites, critical parameters of metal joining processes & power sources.
- 8. Get the knowledge of theoretical aspects of Arc welding Processes & Electrode
- 9. Get the knowledge of theoretical aspects of Resistance,Gas,Soldering,Brazing welding Processes
- 10. Understand working of different advanced metal joining processes.
- 11. Able to understand distortion, defects, causes, remedies & different DT & NDT Test.
- 12. Understand the need of automation, robotics and fixture in metal joining processes

Title of the Course: Metallurgy	L	Т	Р	Credit
Course Code: UPRD0404	3	1	-	4

Course Pre-Requisite:

Fundamental knowledge of crystals structure and meaning of materials, chemistry of Metals and alloys.

Course Description:

Materials science and engineering plays a vital role in this modern age of science and technology. To meet the plant and individual requirements selection of a specific material for a particular use is a very complex process. Metallurgy is the science of materials. The central point of this course is to provide a physical basis that links the structure of materials with their properties, focusing primarily on ferrous and nonferrous metals. With this understanding in hand, the concepts of alloy design and microstructural changes during cooling are also discussed, Heat treating is a group of industrial and metalworking processes as hardening, normalizing and annealing etc. are used to alter the physical, and sometimes chemical, properties of a material.

Course Objectives

- 1) To select proper ferrous or nonferrous metal material as per given application by considering metallurgical and mechanical properties in accordance with its phase diagram with proper justification.
- 2) To explain cooing of any given alloy schematically.
- 3) To calculate percentage of various phases present in solid solution at given temp and composition by using lever rule analytically.
- 4) To draw various types of equilibrium diagrams of Ferrous and Non Ferrous materials, TTT and CCT diagram graphically.
- 5) To clearly distinguish between various types of heat treatment process.

Course Outcomes:

	After the completion of the course the student should	Bloom's C	ognitive
CO	be able to	Level	Descripto r
C01	Select proper material for given application by considering metallurgical and mechanical properties with proper justification.	Ι	Knowledge & skill
CO2	Explain cooing of any given alloy schematically.	II	Knowledge
CO3	Interpret various types of equilibrium diagrams of Ferrous and Non Ferrous materials, TTT and CCT diagram graphically.	II	Knowledge
CO4	Solve numerically percentage of various phases present in solid solution at given temp and composition by using lever rule .	III	Knowledge

C05	To apply core concepts in Materials Science to solve engineering problems.	III	Knowledge
C06	Distinguish between various types of heat treatment process.	IV	Knowledge

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2											
CO2	2											
CO3			2									
CO4		2	2									
CO5	2											
CO6				3								

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/Moodle quiz/Topic seminar/Group Discussions, Industrial case study etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Unit 1: Introduction to Metals and alloy system

Material Classification, Crystallography, Unit Cell, study of crystal structures of SC., BCC, FCC. & HCP, APF, Introduction to Advanced materials, phases, components, degree of freedom, Construction of phase diagram using cooling curves, Isomorphous systems, Eutectic system, Eutectoid, Peritectic. Solid solutions and its types, Intermediate phases

Unit 2: Study of ferrous equilibrium diagrams, with respect to compositions,7 Hrs.properties and applications for following alloys7

Fe-Fe3C Equilibrium diagram for plain carbon steels, Effect of carbon on structure and

8Hrs.

properties, Free cutting steels, Alloy steels, Dual phase steels, micro alloyed steels, High strength low alloy steels, transformation inducted plasticity (TRIP) steels, Tool steels, Stainless steels, Heat resisting steels, HSLA steels, Low temperature alloys, Invar, Hadfield steel, Spring steel, Cast Irons - Fe-C Equilibrium Diagram, Factors Affecting Structure of C.I.(graphitization), C.E of cast iron, Alloy C.I., SG Iron, Ni-Hard, modified Ni- Hard and Ni-Resists,

Unit 3: Study of non-ferrous equilibrium diagrams, compositions, properties,3Hrs.applications and specifications of important alloys3

Copper-based alloys, Aluminum-based alloys ,modification treatment, Titanium- and Mg based ,Non-ferrous equilibrium diagrams - Pb-Sn : solders, Sn-Sb : Babbit

Unit 4: Introduction and Principles of Heat Treatment Processes of Steels ,8Hrs.Heat treatment furnaces, atmospheres, defects and energy economy8Hrs.

Introduction to heat treatment Process, purpose , process variables, Transformation of Pearlite on heating and cooling, TTT and CCT Diagram and significance, Effect of alloying dements on TTT diagram and its significance, Heat treatment furnaces, control systems, furnace atmospheres, Heat treatment defects, causes and remedies, Energy economy

Unit 5: Heat treatment process of steels, cast iron and Non ferrous alloys.

Annealing, Hardening, Normalizing - Classification comparison and application of processes, hardenability ,factors affecting hardenability, determination of hardenability, hardening methods, Tempering - Purposes , types, structural changes during tempering, temper brittleness. Heat treatment process of Cast Irons –Stress relief annealing, normalizing, hardening, surface, hardening and malleablising, annealing. Surface and case hardening processes: Case Hardening, Carburizing, Nitriding, Surface Hardening: Flame hardening, induction hardening, electron beam hardening and laser hardening, Case depth measurement - hardness method, chemical method, microstructure method.

Unit 6: Powder Metallurgy and material testing

Importance of process as a manufacturing technique, advantages and limitations of powder metallurgy, Methods of powder manufacture, , powder conditioning, blending and mixing, Powder compaction - Methods of compaction, Sintering - Types of sintering, structure and property changes during sintering, sintering atmospheres and their importance. Finishing operations - Sizing, heat treatment, surface treatment, electroplating and impregnation treatments, Applications as Self-lubricating (porous) bearings, electric contact materials, filters, magnets, sintered friction materials, cutting tools and cermets, flow charts for manufacturing of above components. Material testing- Tensile test, Izod and charpy impact test, Fatigue test, Hardness measurement methods.

Textbooks:

- [1] Vijendra Singh. Engg. Physical Metallurgy, Standard Publishers, Delhi
- [2] V.D. Kodgire, Material science and metallurgy, Everest Publishers Pune
- [3] T.V. Rajan & C.P. Sharma, Heat Treatments Principles & Practices, PHI.

4 Hrs.

10**Hrs**.

- [4] A.K. Sinha, Powder Metallurgy
- [5] Phase transformation in metals and alloys by K.E Easterling, D.A. Poater, Chapman & Hall, 1992.
- [6] Structure & properties of alloys: the application of phase diagrams to the interpretation and control of industrial alloy structures by Brick, Gordon and Phillips, McGraw-Hill.
- [7] Heat treatment of metals by Vijendra Singh, Standard Publishers Distributors, 2006.
- [8] S.H.Avner, Physical Metallurgy, TMH publication.
- [9] Rollson , Metallurgy for Engg. Technicians, English language Book Society
- [10] Higgins R. A., Hodder, Engineering Metallurgy I and II, English language Book Society.
- [11] Prabhudev, Heat treatment of Steels, HMT Handbook
- [12] G.E. Dieter, Mechanical Metallurgy, Tata McGraw-Hill, New Delhi.
- [13] Engineering Physical Metallurgy Lakhtin, C.B.S. Publishers & Distributors
- [14] Heat treatment of Metals B. Zaharov, C.B.S. Publishers & Distributors India
- [15] Material science and Metallurgy, C. Daniel Yesudin, D. G. Harris Samuel Scitech
- [16] Material Science And Engineering , Callister Wiley India Edition
- [17] ASM Handbooks, American Society of Metals

References:

- [1] S.H.Avner, Physical Metallurgy, TMH publication.
- [2] Rollson , Metallurgy for Engg. Technicians, English language Book Society
- [3] Higgins R. A., Hodder, Engineering Metallurgy I and II, English language Book Society.
- [4] Prabhudev, Heat treatment of Steels, HMT Handbook
- [5] G.E. Dieter, Mechanical Metallurgy, Tata McGraw-Hill, New Delhi.
- [6] Engineering Physical Metallurgy Lakhtin, C.B.S. Publishers & Distributors
- [7] Heat treatment of Metals B. Zaharov, C.B.S. Publishers & Distributors India
- [8] Material science and Metallurgy, C. Daniel Yesudin, D. G. Harris Samuel Scitech
- [9] Material Science And Engineering , Callister Wiley India Edition
- [10] ASM Handbooks, American Society of Metals

Unit wise Measurable students Learning Outcomes:

Unit 1	Introduction to Metals and alloy system	At the end of course Student will be Able to Select proper material for given application by considering metallurgical and mechanical properties with proper justification.
Unit 2	Study of ferrous equilibrium diagrams, with respect to compositions, properties and applications for following alloys	At the end of course Student will be Able to Explain cooing of any given ferrous alloy schematically and analytically Also able To draw various types of equilibrium diagrams of Ferrous materials, TTT and CCT diagram graphically
Unit 3	Study of non-ferrous equilibrium diagrams, compositions, properties, applications and specifications of important alloys	At the end of course Student will be Able to Explain cooing of any given nonferrous alloy schematically and analytically. Also able To draw various types of equilibrium diagrams of Non Ferrous materials, TTT and CCT diagram graphically
Unit 4	Introduction and Principles of Heat Treatment Processes of	At the end of course Student will be Able to explain TTT and CCT diagram graphically and will be Able to

	Steels , Heat treatment furnaces,	distinguish between heat treatment defects and will
	atmospheres, defects and energy	be able to suggest a possible remedies to overcome
	economy	for defects.
Unit 5	Heat treatment process of steels,	At the end of course Student will be Able to select
	cast iron and Non ferrous alloys.	and suggest a proper heat treatment for given steels,
		cast iron and Non ferrous alloys.
Unit 6	Powder Metallurgy and material	At the end of course Student will be Able to List
	testing	sequence of operations to be followed in producing
		components by powder metallurgy and to carry out
		material testing.

Title of	f the Course: THEORY OF MACHINES	T	Р		Credit			
Course	e Code: UPRD0405 3	1	-		4			
Course	Pre-Requisite:							
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Prerequisite for the course is completion of course of Applied Mechanics and Engineering Mathematics. Fundamentals of engineering mechanics including forces acting on bodies at rest, free body diagram, determination of equilibrium equations, differentiation and integration. In addition, the students should have adequate knowledge about graphical skills and analytical skills.							
Course	Description:							
	Theory of Machines is a fundamental course for Prod the working principles of any machine. This course motion, transmission of the motion and the forces re- major focus is on determination of displacement, velo links of the mechanisms using Graphical method Also up necessary background for understanding the dyna focuses on the Balancing of rotary and reciprocating vibrations, free undamped and damped vibration, above, study of simple mechanisms, Brakes and Dyn toothed wheels and gear train are the major contents o	duction e is ex- espon- pority of porthe of amic g mas force hamor of the	on er ssen sibl & ac cour beh ses, ed v mete syll	ngineen tial to e for t ecelera se is in avior Gyros vibratio r, stud abus.	rs to understand understand the he motion. The tion of different ntended to build of machines. It cope, Basics of on. Apart from by of governors,			
Course	e Objectives:							
1.	To be familiar with common mechanisms used in ma	achine	es ar	nd ever	yday life.			
2.	To provide basic concept of kinematics and kinetics of	of ma	achir	ne elen	nents.			
3.	To develop the ability to understand the concepts of analysis of mechanisms.	mech	hanis	sms an	d the kinematic			
4.	To understand the basics of gear design and motion and gear trains.	analy	ysis	and se	lection of gears			
5.	To demonstrate different types of gear trains and its a	applic	catio	ons.				
6.	To acquaint with working principles and applications	s of g	yros	cope a	nd governors			
7.	To understand the procedure and effect of static and and reciprocating masses.	ıd dyı	nam	ic bala	ncing of rotary			
8.	To give awareness to students on the phenomenon of	f vibra	atior	ns and	its effects.			
Course	e Learning Outcomes:							
CO	After the completion of the course the student sho	mld Þ	)e	Bloom	's Cognitive			
	able to	aid L		level	Descriptor			
CO1	Explain the basic relation between velocity and			1	Knowledge			
	acceleration for mechanisms.				-			

CO2	<b>Define</b> various terminologies related to kinematics of gear,	1	Knowledge
	gear train, and gyroscope.		
CO3	Describe basic elements of gear design and motion	2	Knowledge
	analysis and selection of gear and gear trains.		
<b>CO4</b>	Calculate the balancing masses for rotary and	3	Knowledge
	reciprocating disturbing masses.		
CO5	Analyze simple dynamic systems.	4	Knowledge

# Assessments :

# **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:	6 Hrs.
1.1 Introduction:	
Theory of machines – scope, definitions-machine, mechanism, link, kinematic pair, classification of kinematic pairs, conversion, inversion and expansion of mechanism, study of four bar chain, single slider and double slider crank chain and its inversions.	
1.2: Simple Mechanisms:	
Condition for steering, Ackerman's steering mechanism, Davis steering mechanism, Hooke's Joint. (Numerical treatment expected on Hooke's Joint)	
Unit 2: Kinematic Analysis of Mechanisms:	10 Hrs.
2.1 Velocity Analysis	
Concept of position, displacement and velocity of a point and link of a given mechanism, Kinematic analysis of mechanisms by - Relative velocity method, graphical method, (mechanisms up to 6 links) Instantaneous Center method	(5 hours)
(mechanisms up to 4 links) (Numerical treatment expected)	(5 hours)
2.2 Acceleration Analysis	
Concept of acceleration of a point and link of a given mechanism, Kinematic analysis of mechanisms by Relative method, graphical method, Corioli's Component of Acceleration , (Numerical treatment expected)	

Unit 3:3.1 GEAR:	3 Hrs.
Introduction, law of gearing, length of path of contact, arc of contact, contact ratio, interference of involute gear teeth. (numerical treatment expected on spur	
gear)	
3.2GEAR TRAIN :	
Types of gear train, torques in epicyclic gear train analysis of gear trains. (numerical treatment expected on epicyclic gear train)	4 Hrs.
Unit 4: BALANCING:	6 Hrs.
Static and dynamic balancing, balancing of rotary masses, masses in the same plane, masses in different planes, balancing of reciprocating masses, primary and secondary balancing, balancing of locomotives (numerical treatment expected), balancing of multi-cylinder inline engines, balancing of V-engines.	
Unit 5: GYROSCOPE:	5 Hrs.
Introduction, Gyroscopic couple, Effect of gyroscopic couple on motion of aero plane, naval ship, two and four wheelers, Gyroscopic stabilization.(numerical treatment expected)	
Unit 6: VIBRATIONS:	6 Hrs.
9.1 Longitudinal and transverse vibrations:	(3 hours)
Introduction, types, natural frequency for various loading systems, Dunkerly's	
empirical formula, critical speed of shaft. (numerical treatment expected)	
<ul><li>9.2 Torsional vibrations:</li></ul>	(3 hours)
<ul> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> </ul>	(3 hours)
<ul> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> <li>Textbooks:</li> <li>01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishers, Delhi)</li> </ul>	(3 hours)
<ul> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> <li>Textbooks:</li> <li>01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishers, Delhi)</li> <li>02. Theory of Machines, by S. S. Ratan, (TMH)</li> </ul>	(3 hours)
<ul> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> <li>Textbooks:</li> <li>01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishers, Delhi)</li> <li>02. Theory of Machines, by S. S. Ratan, (TMH)</li> <li>03. Theory of Mechanism and Machines by Ghosh and Mallik (EWP)</li> </ul>	(3 hours)
<ul> <li>empirical formula, critical speed of shart. (numerical treatment expected)</li> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> <li>Textbooks:</li> <li>01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishers, Delhi)</li> <li>02. Theory of Machines, by S. S. Ratan, (TMH)</li> <li>03. Theory of Mechanism and Machines by Ghosh and Mallik (EWP)</li> <li>04. Theory of machines, by Dr. R.K.Bansal, Laxmi Publication</li> </ul>	(3 hours)
<ul> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> <li>Textbooks:</li> <li>01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishers, Delhi)</li> <li>02. Theory of Machines, by S. S. Ratan, (TMH)</li> <li>03. Theory of Mechanism and Machines by Ghosh and Mallik (EWP)</li> <li>04. Theory of machines, by Dr. R.K.Bansal, Laxmi Publication</li> <li>05. Theory of Machines by R.S. Khurmi S.Chand and co.</li> </ul>	(3 hours)
<ul> <li>empirical formula, critical speed of shaft. (numerical treatment expected)</li> <li>9.2 Torsional vibrations:</li> <li>Introduction, natural frequency for single, two and three rotor system, torsionally equivalent shafts, free torsional vibrations of a geared system. (numerical treatment expected)</li> <li>Textbooks:</li> <li>01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishers, Delhi)</li> <li>02. Theory of Machines, by S. S. Ratan, (TMH)</li> <li>03. Theory of Mechanism and Machines by Ghosh and Mallik (EWP)</li> <li>04. Theory of machines, by Dr. R.K.Bansal, Laxmi Publication</li> <li>05. Theory of Machines by R.S. Khurmi S.Chand and co.</li> <li>06. Theory of Machines, by Thomas Bevan, (CBS Publishers, Delhi)</li> </ul>	(3 hours)

01. Theory of Machines and Mechanisms, by John Uiker, Garden Pennock & Late. J. F. Shigley,

(Mc Graw Hill Publications)

02. Theory of Machines, by W. Green,

03. Kinematics of Machines by R T Hinckle (Prentice Hall Inc.)

04. Kinematics by V.M. Fairs (McGraw Hill)

05. Mechanism Design: Analysis and Synthesis Vol. I by A. Erdman and G.N. Sander (Prentice Hall)

06. Kinematics and Dynamics of Planer Mechanisms by Jeremy Hirsihham (McGraw Hill)

07. "Machines and Mechanisms Applied Kinematic Analysis", David H. Myszka, Pearson Education, Asia.

08. "Design of Machinery", R. L. Norton, McGraw-Hill.

09. Mechanical vibrations G.K. Grover

10. Mechanical Vibration Analysis- P.Srineevasan- Tata McGraw Hill

11. Theory and Practice of mechanical vibrations J.S.Rao K.Gupta – New Age International Publications.

12. "Design of Machinery", R. L. Norton, McGraw-Hill.

13. Theory of vibrations with applications- W.T. Thompson-Prentice Hall of India

14. Mechanical Vibrations- Schaum's outline series- McGraw Hill

#### Unit wise Measurable students Learning Outcomes:

	Students will be able to identify the
Unit – 1 Introduction and	Mechanism and differentiate between the mechanism.
Simple mechanisms	Students will be able to solve the problem on hooks joint and
	differentiate between steering mechanisms.
Unit – 2 Kinematic Analysis of Mechanisms:	Students will be able to calculate velocity and acceleration of a given mechanism.

	1. Student will be able to analyze Kinematics of gear.	
Unit – 3 Gear and Gear Trains	2. Students will be able to solve Problems on gear train.	
	3. Students will be able to Calculate speed of a gear for a Given train	
Unit- 4	Students will be able to solve Static and dynamic balancing Problems.	
Balancing		
Unit – 5	Students will be able to analyze Gyroscopic effect and solve Problems	
Gyroscope	related to gyroscope.	
Unit – 6	Students will be able to understand Basics of Vibrations. Students will be able to	be
Vibrations	analyse Simple system from vibration point Of view.	

		L	Т	Р	Credit
Title of	f the Course: Audit Course – I: Environmental Studies	2	-	-	Audit
Course	e Code: UPRD0461				Course
Course	Pre-Requisite:				
Students	s shall have knowledge of:				
•	Science				
•	Technology				
Course	Description:				
The obj	ective of the course is imparting fundamental knowledge and a	waren	ess of	Enviro	onmental
science	among students and importance of conservation of environment.				
Course	Objectives:				
At the e	nd of the course students will be able to				
1.	Study scope and importance of natural resources, ecosystem	s, b100	liversi	ty for	creating
2	awareness and their conservation in multiple disciplines.	<b>.</b>	• •		- 11- d'
Ζ.	and sustainable development	res for	mmm	mzing j	ponution
3	Understand social issues related environment, environmental ethi	cs and	humai	n rights	towards
5.	environment	cs and	numai	i iigiits	lowalus
4.	Study various laws & regulations related to environment and its	applic	ability	in soc	ciety and
	industries.				
5.	Choose one of the sectors of environment for detail study as proje	ct.			
Course	Learning Outcomes:				
60	After the completion of the course the student should be	B	loom's	s Descr	riptor
CO	able to				
	Describe natural resources, importance of ecosystem &		Co	gnitive	
CO1	conservation of biodiversity with respect to multiple disciplines		00	Biiiii	
	Explain causes, effects, solutions for various pollution problems	5	Co	gnitive	;
CO2	and its minimization strategies.			0	
	Discuss environmental athias & their implementation for		Co	~~:+:	
CO3	betterment of environment & human life		C	gintive	;
	Differentiate between requirements of laws & regulations for	r	Co	anitive	
CO4	environmental conservation and applicability of legislations in	<b>`</b>		51111100	,
	society and industries.	•			
005	Prepare detailed project report on selected topic based or	1	Co	gnitive	;

#### **CO-PO Mapping:**

environmental issues/problems.

CO5

CO	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12
CO1							2					
CO2	3											
CO3								2				
CO4						2						
CO5										2		

Assessments :		
Assessment	Weightage (Marks)	
ESE	50	
ESE: Assessment is based on 100% course content	•	
Course Contents:		
Module 1:Nature of Environmental Studies		4 Hours
Definition, scope and importance, Multidisciplinary	y nature of environmental studies, Need	
for public awareness.		
Module 2: Natural Resources and Associated Pr	oblems	4 Hours
a) Forest resources: Use and over-exploitation, de	eforestation, dams and their effects on	
forests and tribal people.		
b) Water resources: Use and over-utilization of sur	face and ground water, floods, drought,	
conflicts over water, dams benefits and problems.		
c) Mineral resources: Usage and exploitation. Er	vironmental effects of extracting and	
using mineral resources.		
d) Food resources: World food problem, changes	caused by agriculture effect of modern	
agriculture, fertilizer-pesticide problems.		
e) Energy resources: Growing energy needs,	renewable and nonrenewable energy	
resources, use of alternate energy sources.		
Solar energy, Biomass energy, Nuclear energy.		
f) Land resources: Solar energy, Biomass energy	v, Nuclear energy, Land as a resource,	
land degradation, man induced landslides, soil eros	ion and desertification.	
Role of an individuals in conservation of natural res	sources.	
Module 3: Ecosystems		
Concept of an ecosystem, Structure and function of	of an ecosystem, Producers, consumers	
and decomposers. Energy flow in the ecosystem, E	cological succession.	
Food chains, food webs and ecological pyramids.		
Introduction, types, characteristics features, stru	cture and function of the following	6 Hours
ecosystem :-		
a) Forest ecosystem, b) Grassland ecosystem, c) De	esert ecosystem, d) Aquatic ecosystems	
(ponds, streams, lakes, rivers, oceans, estuaries).		
Module 4:Biodiversity and its conservation		
Introduction- Definition: genetic, species and ecosy	stem diversity.	
Bio-geographical classification of India.		
Value of biodiversity: consumptive use, product	ive use, social, ethical, aesthetic and	6 Hours
option values.		
India as a mega- diversity nation, Western Ghat as	a biodiversity region.	
Hot-spot of biodiversity. Threats to biodiversity h	abitat loss, poaching of wildlife, man-	
wildlife conflicts. Endangered and endemic species	of India. Conservation of biodiversity:	
In-situ and Ex-situ conservation of biodiversity.		
Module 5: Environmental Pollution		6 Hours
Definition: Causes, effects and control measures of	of: Air pollution, Water pollution, soil	
pollution, Marine pollution, Noise pollution, The	rmal pollution, Nuclear hazards. Solid	
waste Management: Causes, effects and control m	easures of urban and industrial wastes.	
Role of a individual in prevention of pollution.		

Module 6: Social Issues and the Environment	8 Hours
Disaster management: floods, earthquake, cyclone, tsunami and landslides. Urban	
problems related to energy Water conservation, rain water harvesting, watershed	
management, Resettlement and rehabilitation of people; its problems and concerns.	
Environmental ethics: Issue and possible solutions. Global warming, acid rain, ozone	
layer depletion, nuclear accidents and holocaust. Wasteland reclamation.	
Consumerism and waste products.	
Module 7:Environmental Protection	8 Hours
From Unsustainable to Sustainable development.	
Environmental Protection Act.	
Air (Prevention and Control of Pollution) Act.	
Water (Prevention and control of Pollution) Act.	
Wildlife Protection Act.	
Forest Conservation Act.	
Population Growth and Human Health, Human Rights.	
Textbooks:	
1. Environmental Studies by Dr. P.D.Raut (Shivaji University, Kolhapur)	
References:	
1. Miller T.G. Jr., Environmental Science. Wadsworth Publications Co.(TB).	
2. Odum, E.P.1971, Fundamentals of Ecology, W.B.Saunders Co. USA, 574p	
3. Trivedi R.K. Handbook of Environmental Laws, Rules, Guidelines, Compliances and	d
Standards, vol. I and II, Environmental Media (R)	
Unit wise Learning Outcomes:	
At the end of the course the students will be able to	
UO 1 Describe scope and importance of environmental studies.	
UO 2 Describe types of natural resources, their use and conservation.	
UO 3 Explain structure and functions of ecosystem, their types and importance.	
UO 4 Discuss biodiversity, endangered species and methods of biodiversity conservation.	
UO 5 Explain causes, effects and solutions to pollution problems.	
UO 6 Discuss environmental ethics and various social issues related to environment.	
UO 7 Discuss laws and regulations for conservation of environment.	

				-
Title of the Course: Industrial Hydraulics and Pneumatics	L	Т	Р	Credit
Course Code: UPRD0431				
	-	-	2	1
Course Pre-Requisite: Fluid Mechanics				
Course Description: This course aims to impart knowledge of flu	id pov	ver sy	vstems	such as
hydraulics and pneumatics w.r.t. their components, circuits and their ap	plicatio	ons, de	esign (	of system
and maintenance and troubleshooting of the system.				
Course Objectives:				
1. To study application of fluid mechanics and governing laws in hydrouli	o and r	noum	otio oti	atoma

- 1. To study application of fluid mechanics and governing laws in hydraulic and pneumatic systems.
- 2. Study of working principle of various components used in hydraulic and pneumatic systems.
- 3. Study of ISO/JIC symbols of fluid power systems.
- 4. Selection of different components used in hydraulic and pneumatic systems.
- 5. Development of hydraulic and pneumatic circuits.
- 6. Industrial applications of hydraulic and pneumatic circuits.

# **Course Learning Outcomes:**

CO	After the completion of the course the student should be able to	Bloon	ı's Cognitive
		level	Descriptor
CO1	Students shall demonstrate an understanding of fluid power	1	Understanding
	terms, concepts, and calculations for simple applications		
CO2	The student will be able to select components for	2	Applying
	application of fluid power (Hydraulics and Pneumatics) in		
	Industries.		
<b>CO3</b>	Students shall demonstrate the ability to use and apply	3	Applying
	hydraulic, Pneumatic and Electro hydraulic schematics to		
	build circuits.		

# **CO-PO Mapping:**

СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1		2			2	2	2		2			1	
CO2	2		2		1	2	2	2	2	2			2	
CO3	2		3		1	3	3	2	3	2				3

# Assessments :

#### **Teacher Assessment:**

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	25
ESE (P.O.E.)	25

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:
Experiment No. 1: Bernoulli's Theorem on Bernoulli's apparatus.
Experiment No. 2:Study of pressure, direction and flow control valves in
hydraulics and pneumatics using cut section
models
Experiment No. 3:Meter-in, Meter-out and Bleed-off, Sequencing,
Counterbalancing, Synchronizing, Interlocking circuits on hydraulic trainer.
Experiment No. 4:Manual / automatic forward – reverse, sequencing, Basic
logic circuits on pneumatic trainer.
Experiment No. 5:Eletcro-Hydraulic systems- study and simple circuits.
Experiment No. 6:Design of a hydraulic circuit for a given application and
selection of components from commercial catalogs.
Experiment No. 7:industrial visit to study industrial applications of hydraulics
and pneumatics with submission of the relevant report.
Textbooks:
1. "Oil hydraulics Systems", S. R. Mujumdar, Tata McGraw Hill Publication.
2. "Pneumatic Systems", S. R. Mujumdar- Tata McGraw Hill Publication.
3. "Industrial Fluid Power", D. S. Pawaskar, Nishant Prakashan.
4. "Hydraulics and Pneumatics", Shaikh and Khan, R.K. Publication.
5. "Fluid Power with Application", Esposito, Pearson Education, 7th Edition.
6. "Basic Hydraulic – Festo Manual"
7. "Basic Pneumatic – Festo Manual"
8. "Industrial Fluid Power", S.S. Kuber, Nirali Prakashan, 3rd Edition.
9. "Hydraulics and Pnuematics", Dr. Anand Bewoor, Late S.K.Ponde, Nirali Prakashan.
References:
9. "Hydraulic and Pneumatic",H.L.Stewart,Industrial Press.
10. "Industrial Hydraulic", J. J. Pipenger, Tata McGraw Hill.
11. "Power Hydraulics", Goodwin 1st Edition.
12. "Introduction to Hydraulic and Pneumatics", S. Ilango and V Soundararajan, Prentice Hall of
India, 2nd Edition. 12 "Proventia Control" Joji D. Wiley 1st Edition
15. Pheumatic Control, Joji P., whey., 1st Edition. 14. "Eluid Power" Jagadeesha T. Wiley Publications
15 Eaton (Vickers) Manual
<b>16.</b> Product Manuals and books from Vickers/ Eaton FESTO SMC pneumatics
Experiment wise Measurable students Learning Outcomes:
Experiment wise measurable students Learning Outcomes:
Student shall be able to-
Experiment No. 1: understand the theory of Bernoulli's.
Experiment No. 2: Study various control valves in hydraulics and pneumatics
Experiment No. 3: study various circuits on hydraulic trainer.
Experiment No. 4: study various circuits on pneumatic trainer.
Experiment No. 5:study Eletero-Hydraulic systems and simple circuits.
Experiment No. 6: Planning of a hydraulic circuit for a given application from commercial
catalogs.
Experiment No. 7:industrial visit to study industrial applications of hydraulics and pneumatics with
submission of the relevant report.

Course Code	Course Name	Н	r/Wee	Credits	
		L	Т	Р	
UPRD0432	Metal Joining Technology- Lab	-	-	2	1

Course Pre-Requisite:
Zeal to learn the Subject through practical work.
Course Description:
Production engineers need to know different types of metal joining processes for production. The
present course intends to give the exposure of various joining processes for a product whose scale
ranges from miniature to extra-large. Since joining of metals is an important manufacturing route to
fabricate bulk storage and processing equipment's. The subject focuses on understanding and
performing various joining process and equipment's, the underlying principles and their relative
merits and demerits. It also helps them to understand the advancement in the technology in metal
joining.

#### **Course Objective:**

- To understand the concepts of metal joining process.
- To classify different metal joining methods.
- To perform on different metal joining methods.
- To understand the concepts of testing for welded joint.
- To provide a limited amount of experience welding.
- To bridge up the gap between the demand of the industry & the academic curriculum.

#### **Course Learning Outcome:**

- After learning the course the students should be able to:
- Acquire knowledge of various welding processes.
- Select the appropriate metal joining process.
- Decide the process parameters suitable for the material & processes.
- Apply knowledge of various Mechanical testing of welded joints.
- Apply knowledge of various NDT testing of welded joints.

Ble	Bloom's Cognitive			
Level	Descriptor			
I	Remembering			
II	Understanding			
ш	Applying			
IV	Analyzing			
-	Level       I       II       III       III       III			

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO
CO	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO	3	2	-	-	-	-	-	-	-	-	-	-	-	2
CO	2	-	3	-	3	-	-	-	2	-	-	-	-	-
CO	2	-	-	2	3	-	2	-	-	-	-	2	2	-
						Evalu	uation	Schen	ne	Ma	alza			
		Comn	onent			Eval	uation	Schen	ne	Mai	rks			
		Comp	onent			Eval	uation	Schen Max	ne	Mai	*ks	Min for	r Passin	g
		Comp	onent E			Eval	uation	Schen Max 25	ne	Mai	rks	Min for	<b>Passin</b> 10	g

Course Contents:	Hrs.
<b>Experiment No.01</b> – <b>Aim:-</b> To identify and understand various safety aspect of welding. <b>Outcome:</b> Able to identify and understand various safety aspect of welding.	1
Experiment No.02-Aim:-To study & understand different Power source used in Welding with its specific application Outcome: Able to understand different Power source used in Welding with its specific application	1
<b>Experiment No.03 - Aim:-</b> To study the specifications of electrodes / filler wires used in welding <b>Outcome:</b> Able to select electrodes / filler wires used in welding	1
<ul> <li>Experiment No.04 - Aim:-To understand and perform Arc Welding Operation with its application.</li> <li>Outcome: Able to understand and perform Arc Welding Operation with its application.</li> </ul>	2
<ul> <li>Experiment No.05 - Aim:-To Understand and perform Spot welding Operation and process with its application.</li> <li>Outcome: Able to understand and perform Spot welding Operation and process with its application.</li> </ul>	1
<ul><li>Experiment No.06 - Aim:-To understand and perform MIG Welding Operation with its application.</li><li>Outcome: Able to understand and perform MIG welding Operation and process with its</li></ul>	2

application.	
<b>Experiment No.07</b> – <b>Aim:-</b> To understand and perform gas welding Operation with its application.	2
Outcome: Able to understand and perform gas welding Operation with its application.	
<b>Experiment No.08</b> – <b>Aim:-</b> To understand and perform soldering operation with its application.	2
Outcome: Able to understand and perform soldering operation with its application.	
<b>Experiment No.09</b> – <b>Aim:-</b> To identify and understand various welding defects, causes and their remedies.	
<b>Outcome:</b> Able to identify and understand various welding defects, causes and their remedies.	2
<b>Experiment No.10</b> – <b>Aim:-</b> To understand & perform the various DT and NDT methods for weld joints.	
Outcome: Able to understand and perform the various DT and NDT methods for weld joints	2
Experiment No.11– Aim:-To study advanced welding processes through Industrial Visit	2
Outcome: Able to observe advanced welding processes.	
Text books:	
1. Parmer R.S., "Welding Engineering and Technology", 1st edition, Khanna Publishers, New 2008.	Delhi,
2. Parmer R.S., "Welding Processes and Technology", Khanna Publishers, New Delhi, 1992. 8	87
<ol> <li>Little R.L., "Welding and welding Technology", Tata McGraw Hill Publishing Co., Ltd., N Delhi, 34th reprint, 2008.</li> </ol>	ew
References:	
1. Schwartz M.M. "Metals Joining Manual". McGraw Hill Books, 1979.	
2. Tylecote R.F. "The Solid Phase Welding of Metals". Edward Arnold Publishers Ltd. Lond 1968.	on,
3. AWS- Welding Hand Book. 8th Edition. Vol- 2. "Welding Process"	
4. Nadkarni S.V. "Modern Arc Welding Technology", 1st edition, Oxford IBH Publishers, 20	005.

5. Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.

6. Davis A.C., "The Science and Practice of Welding", Cambridge University Press, Cambridge,1993

#### **Experiment wise Measurable students Learning Outcomes:**

- 1. Able to identify and understand various safety aspect of welding.
- 2. Able to understand different Power source used in Welding with its specific application
- 3. Able to select electrodes / filler wires used in welding.
- 4. Able to understand and perform Arc Welding Operation with its application.
- 5. Able to understand and perform Spot welding Operation and process with its application.
- 6. Able to understand and perform MIG welding Operation and process with its application.
- 7. Able to understand and perform gas welding Operation with its application.
- 8. Able to understand and perform soldering operation with its application.
- 9. Able to identify and understand various welding defects, causes and their remedies.
- 10. Able to understand and perform the various DT and NDT methods for weld joints.
- 11. Able to observe advanced welding processes.

Title of	the Cou	urse: M	etallurg	gy				L	Т	Р	Cr	edit
Course	Irse Code: UPRD0433							0	0	2		1
Course Pre-Requisite:												
Fundamental knowledge of crystals structure and meaning of materials, chemistry of Metals and alloys.												
Course	Descrip	otion:										
<ul> <li>Materials science and engineering plays a vital role in this modern age of science and technology. To meet the plant and individual requirements selection of a specific material for a particular use is a very complex process. Metallurgy is the science of materials. The central point of this course is to provide a physical basis that links the structure of materials with their properties, focusing primarily on ferrous and nonferrous metals. With this understanding in hand, the concepts of alloy design and microstructural changes during cooling are also discussed, Heat treating is a group of industrial and metalworking processes as hardening, normalizing and annealing etc. are used to alter the physical, and sometimes chemical, properties of a material.</li> <li>Course Objectives</li> <li>To select proper ferrous or nonferrous metal material as per given application by considering metallurgical and mechanical properties in accordance with its phase diagram with proper justification.</li> </ul>												
<ul> <li>To</li> <li>To</li> <li>cor</li> <li>To</li> <li>CC</li> <li>To</li> </ul>	explain calcula npositio draw va T diagra clearly	cooing ate percon by us arious ty am grap distingu	of any g centage ing leve ypes of whically.	given al of van r rule an equilibr veen va	loy scho rious p nalytica rium dia rious ty	ematica hases p lly. agrams pes of h	lly. present of Ferro neat treat	in solid	d solu Non Fe	tion at g errous ma	given ter terials, T	np and TT and
Course	Learni	ng Outo	comes:								. ~	
СО	After able to	the con o	pletion	of the	course	the stu	dent sho	ould be	_	Bloon	n's Cogn Desc	itive riptor
CO1	Select metall justifie	proper urgical cation.	material and mec	l for giv chanical	en appl proper	ication ties with	by consi h proper	idering		Ι	Knowl sk	edge &
CO2	Expla	<b>in</b> cooir	ng of an	y given	alloy so	chemati	cally.			II	Know	vledge
CO3	<b>Interp</b> Non F	oret vari errous r	ious typ naterials	es of eq s, TTT a	uilibriu and CC	m diagr T diagra	ams of l am <i>grap</i>	Ferrous hically.	and	Π	Knov	vledge
CO4	Solve solutio	<i>numeric</i> on at giv	<i>cally</i> per ven temp	centage and co	e of vari mpositi	ious pha ion by u	ises pres ising lev	ent in so er rule .	olid	III	Knov	vledge
CO5	To <b>ap</b> engine	<b>ply</b> core ering pr	e concep roblems	ots in M	aterials	Science	e to solv	e		III	Knov	vledge
CO6	Distin	<b>guish</b> b	etween	various	types o	f heat tr	reatment	process	8.	IV	Know	vledge
CO-PO	CO-PO Mapping:											
СО	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2											
CO2	2											
CO3			2									
CO4		2	2									
CO5	2											
CO6				3								
Assessm	ents :											

Teacher Assessment:								
Assessment Marks Min for Passing								
ISE	25	10						
ISE based on assignment/declared test/Moodle quiz/Topic seminar/Group Discussions, In case study etc.								
Course Contents:								
<b>Experiment No.1</b> Study of Metallurgical micros	cope and Metallography							
Outcome: To handle Metallurgical microscope	e physically and independent	ntly and to cary out	2 hrs					
specimen preperation		5						
Experiment No.2 Study of microstructure of hy	po eutectoid, Eutectoid steel	and Hypereutectoid	2 hrs					
steels								
Outcome: To differentiate among types of stee	els by observing their respec	ctive microstructures						
and Fe-Fe ₃ C diagram								
Experiment No.3 Study of microstructure of c	ast iron as SG, Gray, White	e, Chilled, Malleable	2 hrs					
Cast Irons								
Outcome: To differentiate among types of	of cast irons by observin	ng their respective						
microstructures and Fe-Fe ₃ C diagram								
Experiment No.4Study of microstructure of Nor	n-ferrous alloys as Brass, Bro	onze, Babbits	2 hrs					
Outcome: To differentiate among types of Cu,	Al, Mg, Pb, Sn based alloy	s by observing their						
respective microstructures and phase diagram								
<b>Experiment No.5</b> Tensile test of MS, Al and Br	cass material		2 hrs					
<b>Outcome:</b> To interpret mechanical properties of <b>Experiment No.6</b> Izod and charpy impact test of	ferrous and non ferrous mate	erials.	2 hm					
<b>Outcome:</b> To interpret mechanical properties of	ferrous and non ferrous mate	vriale	2 1178					
Experiment No 7 Study of Normalizing Append	ling and Hardoning host trac	tmont	2 hrs					
<b>Outcome:</b> To carry out Normalizing, Annealing	and Hardening heat treatme	unem ant with help of TTT	2 111 5					
Diagram	g and Hardening near treating	ant with help of 111						
<b>Experiment No 8</b> Study of Hardenability of stee	1		2 hrs					
<b>Outcome:</b> To interpret meaning and importance	of Hardenability of steel		2 11 5					
<b>Experiment No.09</b> Study of heat treatment furna	aces.		4 hrs					
<b>Outcome:</b> To study different types of Furnac	tes and to select a proper	furnace a per given						
condition and application	and to select a proper	annae a per green						
Experiment No.10 Industrial Visit			4 hrs					
<b>Outcome:</b> To study different heat treatment proc	cesses							
Textbooks:								
1 Vijendra Singh Engg Physical Metall	lurgy Standard Publishers	Delhi						
2. V.D. Kodgire. Material science and mo	etallurgy, Everest Publisher	rs Pune						
3. T.V. Rajan & C.P. Sharma, Heat Treat	tments Principles & Practice	es, PHI.						
4. A.K. Sinha, Powder Metallurgy								
5. Phase transformation in metals and alloys by K.E Easterling, D.A. Poater, Chapman 1992.								
6. Structure & properties of alloys: the application of phase diagrams to the interpretate								
7 Heat treatment of metals by Vijendra	Singh Standard Publishers	S, MCGFaw-Hill.						
Poforonoos:	Singh, Standard T donshers	Distributors, 2000.						
1 S. H. Aupor, Dhysical Matellurgy, TME	Inublication							
2 Rollson Metallurgy for Engg Techni	r puolicauoli. cians: English language Ro	ok Society						
3. Higgins R. A., Hodder, Engineering M	fetallurgy I and II. English 1	anguage Book Socie	tv.					
<ul> <li>4. Prabhudev, Heat treatment of Steels, HMT Handbook</li> </ul>								

- 5. G.E. Dieter, Mechanical Metallurgy, Tata McGraw-Hill, New Delhi.
- 6. Engineering Physical Metallurgy Lakhtin, C.B.S. Publishers & Distributors
- 7. Heat treatment of Metals B. Zaharov, C.B.S. Publishers & Distributors India
- 8. Material science and Metallurgy, C. Daniel Yesudin, D. G. Harris Samuel Scitech
- 9. Material Science And Engineering, Callister Wiley India Edition

10. ASM Handbooks, American Society of Metals

#### **Exeriment wise Measurable students Learning Outcomes:**

- [1] Able to handle metallurgical microscope physically and independently and to cary out specimen preparation
- [2] Able to differentiate among types of steels by observing their respective microstructures and Fe-Fe₃C diagram
- [3] Able to differentiate among types of cast irons by observing their respective microstructures and Fe-Fe₃C diagram
- [4] Able to differentiate among types of Cu, Al, Mg, Pb, Sn based alloys by observing their respective microstructures and phase diagram
- [5] Able to interpret mechanical properties as TS; yield strength etc. of ferrous and non ferrous materials.

[6] Able to interpret mechanical properties as toughness of ferrous and non ferrous materials.

- [7] Able to carry out Normalizing, Annealing and Hardening heat treatment with help of TTT Diagram
- [8] Able to interpret meaning and importance of Hardenability of steel.
- [9] Able to study different types of Furnaces and to select a proper furnace a per given condition and application
- [10] Able to study different heat treatment processes

Title of the Course: Theory of Machines – Lab.	L	Т	Р	Credit
Course Code: UPRD0434	0	0	2	1
Course Pre-Requisite:				

Prerequisite for the course is completion of course of Applied Mechanics and Engineering Mathematics. Fundamentals of engineering mechanics including forces acting on bodies at rest, free body diagram, determination of equilibrium equations, differentiation and integration. In addition, the students should have adequate knowledge about graphical skills and analytical skills.

#### **Course Description:**

Theory of Machines is a fundamental course for Production engineers to understand the working principles of any machine. This course is essential to understand the motion, transmission of the motion and the forces responsible for the motion. The major focus is on determination of displacement, velocity & acceleration of different links of the mechanisms using Graphical method Also the course is intended to build up necessary background for understanding the dynamic behavior of machines. It focuses on the Balancing of rotary and reciprocating masses, Gyroscope, Basics of vibrations, free undamped and damped vibration, forced vibration. Apart from above, study of simple mechanisms, Brakes and Dynamometer, study of governors, toothed wheels and gear train are the major contents of the syllabus.

#### **Course Objectives:**

- 1. To be familiar with common mechanisms used in machines and everyday life.
- 2. Determine M.I of irregular shape bodies experimentally
- 3.To identify and investigate the stability of spinning bodies due to gyroscopic effect.
- 4. To apply the theoretical knowledge to balance the rotary systems.
- 5.To determine natural frequency, damped frequency and resonant frequency of any vibratory system.
- 6.To recognize the whirling speed conditions of shaft and methods to eliminate it.

# **Course Learning Outcomes:**

СО	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Define various terminologies related to kinematics of gear, gear train, flywheel and gyroscope.	1	Knowledge		
CO2	Explain the function of governor and flywheel.	2	Knowledge		
CO3	Describe basic elements of gear design and motion analysis and selection of gear and gear trains.	2	Knowledge		
CO4	Calculate the balancing masses for rotary and reciprocating disturbing masses.	3	Knowledge		
CO5	Analyze simple dynamic systems.	4	Knowledge		

# **CO-PO Mapping:**

CO	1	2	3	4	5	6	7	8	9	10	11	12
C01	-			2		•	-			10		3
CO2			3	-								3
C02			5	2								3
CO4		3		-								3
C05		2	1									3
Assess	nents :											
Teache	r Asse	ssment	•									
One cor	nponei	nt of In	Semes	ter Eval	luation	(ISE) a	nd one	End S	emester	r Exami	nation	(ESE)
having	50%. a	nd 50%	6 weigh	ts respe	ectively	(152) (			ennester	Ditaili	inacioni	
Assess	ment				y		larks					
ISE						5(	)					
ESE						50	, )					
ISE are	hased	on nrac	ctical ne	rforme	d/ Oniz	/ Mini	Project	assion	ned/ Pre	esentatio	n/ Gro	un
ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc. ESE: Assessment is based on oral examination									up			
Course	Conte	ents:	~ .								L	
Experi	nent N	lo. 1:	- Study	of mac	hine an	id mech	nanisms	5.			2 Hrs	5.
Aim an	d Obj	ectives	: Introd	uce stu	dents to	machi	ine, me	chanis	m etc.			
Theore theory Experin	tical B nentat	ackgro tion: W	ound: In Vorking	ntroduc models	tion to	Theory chanisr	of Maons and i	chines inversi	– I Uni ons.	t —I		
- 		I. <b>3</b> .	-								4 11-	_
Experi	nent P	NO. $2:-$									4 Hrs	S.
Velocity method	y analy	ysis	By Inst	antaneo	ous Ce	nter m	ethod a	nd rel	ative V	elocity		
Aim and Objectives: To Determine the velocities of links of mechanism Outcomes: Explain the basic relation between time, velocity and acceleration for mechanisms.												
Experiment	ncal B	ackgro tion: O	ne A3 si	ze sheet	Analy of prob	olems or	nstanta 1 Instant	aneous	Center I Center	nethod		
Conclu	cion. (	^a loulo	ta tha v		of a no	int on f	our lin1	maah	onicm			
Erm	51011: (		te tile v	ziocity	or a po	init off I		x mech	amsm		<u> 1</u>	•
Experi	nent N	10. <b>5:-</b>	 linel V	brotion	a.						2 Hrs	ö.
Study o	$\mathbf{J}$ Iree 1	ongitu(		Uration	S	1 f	on	6 h - 1' -	1	~		
Aim an		loulat	Deteri	inne th		ai irequ	lency O	theory	a spring	g.		
Theorem	ies: Ca	uculate	natura	i ireque	n Tree		my and	unroug	gn expe	rment		
I neore Evnori	ucal B	ackgr(	otormin	10ration	11, 1 ype f froaw	s.	longit	udinal	vibrotic	ne		
Results Conclu	and D	iscussi	ions: co	omparis	on of th	neoretic	cal and	experi	mental	results.		

Experiment No. 4: Study of Trifillar Suspension	2 Hrs.
Aim and Objectives: To study the method to find M.I. of a body	
<b>Outcomes:</b> Determine M.I of irregular shape bodies experimentally	
Theoretical Background: Transverse vibration, M.I. equation for given	
body	
Experimentation: Calculate natural frequency of trifillar suspension	
<b>Results and Discussions:</b> comparison of theoretical and experimental results	
Conclusion:	
Experiment No. 5:	2Hrs.
Study of Gyroscope	
Aim and Objectives: Study gyroscopic effect	
Outcomes: Gyroscopic couple calculation	
Theoretical Background: Gyroscope and its effect.	
<b>Experimentation:</b> Study gyroscopic effect by applying external force to	
spinning body in equilibrium	
<b>Results and Discussions:</b> comparison of theoretical and experimental results	
Conclusion:	
Experiment No. 6:	4 Hrs.
Experiment on Static and Dynamic Balancing	
Aim and Objectives: Balancing of masses in different planes.	
Outcomes: balancing of disturbing masses.	
Theoretical Background: Centrifugal Force due to disturbing mass and	
moment.	
<b>Experimentation:</b> Balancing of two masses rotating in different planes with	
another two masses rotating in planes.	
<b>Results and Discussions:</b> comparison of theoretical and experimental results	
Conclusion	
Experiment No. 7:	2 Hrs
Study of Whirling Speed of shaft	
Aim and Objectives: Study of critical speed	
Outcomes:	
<b>I neoretical Background:</b> Whirling speed and its effect due to centrifugal	
Experimentation:	
Conclusion	
Taxtbooks:	
01. Theory of Machines and Mechanisms, by P. L. Ballaney, (Khanna Publishe	ers, Delhi)
02. Theory of Machines, by S. S. Ratan, (TMH)	
03. Theory of Mechanism and Machines by Ghosh and Mallik (EWP)	
04. Theory of machines, by Dr. R.K.Bansal, Laxmi Publication	
05.Theory of Machines by R.S. Khurmi S.Chand and co.	
06. Theory of Machines, by Thomas Bevan, (CBS Publishers, Delhi)	
References:	
01. Theory of Machines and Mechanisms, by John Uiker, Garden Pennoc	k & Late. J. F.
# Shigley,

(Mc Graw Hill Publications)

02. Theory of Machines, by W. Green,

03. Mechanical vibrations G.K. Grover

04. Mechanical Vibration Analysis- P.Srineevasan- Tata McGraw Hill

05. Theory and Practice of mechanical vibrations J.S.Rao K.Gupta – New Age International Publications.

06. "Machines and Mechanisms Applied Kinematic Analysis", David H. Myszka, Pearson Education, Asia.

07. "Design of Machinery", R. L. Norton, McGraw-Hill.

08. Theory of vibrations with applications- W.T. Thompson-Prentice Hall of India

09. Mechanical Vibrations- Schaum's outline series- McGraw Hill

Experiment wise Measurable students Learning Outcomes:

1	Study of machine and mechanisms	Students will be able to identify various Mechanisms and their inversions				
2	Velo Velocity analysis By Instantaneous Center method and relative Velocity method	Students will be able to calculate velocity and acceleration of a given mechanism.				
3	Study of free longitudinal Vibrations	Students will be able to calculate natural frequency Of Longitudinal vibrations theoretically and Experimentally.				
4	Study of Trifillar Suspension	Students will be able to calculate radius of gyration Of a given component.				
5	Study of Gyroscope	Students will be able to study the gyroscopic effect				
6	Experiment on Static and Dynamic Balancing	Students will be able to balance the system .				

7	Study of Whirling Speed of shaft	Students will study the whirling speed in a rotating Shaft and its effect.	

Title of the Course: Workshop Practice – III	L	Т	Р	Credit
Course Code: UPRD0435	-	-	2	1
Course Pre-Requisite:				

- 4. Fundamentals of drawing
- 5. Fundamentals of machine tool processes
- 6. Fundamentals of cutting processes

#### **Course Description:**

The workshop training aims at providing practical experience in production of components as well as knowledge and understanding about materials and their machining and finishing. The machine shop is the heart and soul of Production engineering branch. It deals with the various machining operations such as turning, milling, grinding, shaping, thread cutting, drilling etc.

#### **Course Objectives:**

2. To practice basic metal cutting processes and enhance the skills.

# **Course Learning Outcomes:**

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Explain basic metal cutting processes performed on drilling,	2	Explain	
	grinding and milling machine			
CO2	Demonstrate turning of given concentric and eccentric profile on	2	Demonstrate	
	Lathe machine			
<b>CO3</b>	Perform metal cutting operations on parts of an assembly on	5	Perform	
	lathe, milling, drilling and grinding machines as per specified			
	part drawings			
<b>CO4</b>	Organize the different machined parts to form an assembly	3	Organize	

# **CO-PO Mapping:**

СО	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1													
CO2		2												
CO3				2										
<b>CO4</b>						2		2				2		3

# **Assessments :**

#### **Teacher Assessment:**

Assessment	Marks
ISE	25
ESE (P.O.E)	25

ISE: Assessment is based on 100% lab work

ESE: Assessment is based on 100% lab work.

Practical examination of Six hours duration should be conducted under the supervision of external examiner and should consist of preparation of job involving operations based on Workshop Practice-III and workshop practice-IV and the assessment of the job by the external examiner.

Course Contents:				
Lab section 1:Introduction to basic operations and tools				
Lab section 2: Drawing reading and process sequence	2 Hrs.			
Lab section 3: One composite job consisting of three to four parts employing following operations such as turning, profile turning, eccentric turning, milling, grinding, shaping, thread cutting, drilling.	20 Hrs.			

# Note:-

- 1) Students should prepare setup wise working drawing showing all the details in work diary.
- 2) Dimensional accuracy is of prime importance.
- 3) Student must maintain work diary showing regular progress in the semester.

# **Textbooks:**

1. Workshop Technology Vol. I & II by Hajra Chaudhary, (Media Promoters & Publishers Pvt. Ltd.)

- 2. Workshop Technology Vol. I, II and III by W.A.J. Chapman, (ELBS)
- 3. Workshop Technology Vol. II by Bawa H. S. (TMH)
- 4. A Course on Workshop Technology Vol. 1 by B. S. Raghuvanshi; (Dhanpat Rai & Co.)
- 5. Workshop Technology Vol. III Chapman (ELBS)

# Experiment wise Measurable students Learning Outcomes:

- 5. Student shall be able to explain basic machining operations
- 6. Student shall be able to decide process sequence
- 7. Student shall be able to perform turning, profile turning, eccentric turning, milling, grinding, shaping, thread cutting, drilling operation